RU EN

Меню страницы:

Публикации 2014-2023 гг.

Контактная информация:
Ключевые слова:
термогравиметрия, дифференциальная сканирующая калориметрия, аналитический пиролиз, оценка изменения химического состава ископаемой древесины, таксодиум двурядный (Taxodium distichum (L.) Rich.), западная Венгрия
Страницы:
56–69

Реферат

УДК 630*813

Shapchenkova O. A.1, Loskutov S. R.1, Plyashechnik M. A.1, Pásztory Z.2 Thermal analysis and pyrolysis–gas chromatography/mass spectrometry of fossil wood from the locality of Bükkábrány, Hungary (Шапченкова О. А.1, Лоскутов С. Р.1, Пляшечник М. А.1, Пастори З.2 Термический анализ и пиролитическая газовая хромато-масс-спектрометрия ископаемой древесины из местности Бюккабрани, Венгрия) // Сибирский лесной журнал. 2022. № 5. С. 56–69 (на английском языке, реферат на русском).

DOI: 10.15372/SJFS20220505

© Шапченкова О. А., Лоскутов С. Р., Пляшечник М. А., Пастори З., 2022

Ископаемая древесина возрастом около 7 миллионов лет из Бюккабрани (Венгрия) была проанализирована с помощью термогравиметрии (ТГ), дифференциальной сканирующей калориметрии (ДСК) и пиролитической газовой хромато-масс-спектрометрии (Пи-ГХ/МС) для оценки изменения ее химического состава. В качестве контроля был взят образец древесины таксодиума двурядного (болотного кипариса обыкновенного) (Taxodium distichum (L.) Rich.) из западной Венгрии. Ископаемая древесина характеризовалась более высоким содержанием общего углерода (58.05 %) и общего азота (0.44 %) по сравнению с современной древесиной. ТГ ископаемой древесины показали высокую неоднородность древесного вещества, значительную потерю полисахаридов и обогащение лигнином, включая более термостабильные компоненты (> 500 °C). Изменение энтальпии (∆H) сгорания (термоокисления) ископаемой древесины было значительно больше, чем современной древесины (-18.17 кДж/г против -11.41 кДж/г). Пи-ГХ/МС ископаемой древесины показала значительное уменьшение продуктов пиролиза полисахаридов и увеличение продуктов пиролиза лигнина по сравнению с современной древесиной. Пиролитическое отношение H/L свидетельствует о преимущественной потере полисахаридов в ископаемой древесине. Продукты пиролиза полисахаридов встречались редко и были представлены в основном левоглюкозаном. Лигнин также претерпел существенные изменения. Резкое уменьшение доли мономеров, увеличение доли соединений с короткой боковой цепью и присутствие деметилированных/деметоксилированных соединений в составе продуктов пиролиза лигнина указывает на изменение (деградацию) лигнина. Кроме того, отмечено высокое содержание стирола, крезолов, фенола и фенольных соединений.

Текст статьи


REFERENCES

Bardet M., Pournou A. Fossil wood from the Miocene and Oligocene epoch: chemistry and morphology // Magn. Reson. Chem. 2015. V. 53. Iss. 1. P. 9–14.

Bergen P. F. van, Poole I., Ogilvie T. M. A., Caple C., Evershed R. P. Evidence for demethylation of syringyl moieties in archaeological wood using pyrolysis-gas chromatography/mass spectrometry // Rapid Commun. Mass Spectrom. 2000. V. 14. Iss. 2. P. 71–79.

Björdal C. G. Microbial degradation of waterlogged archaeological wood // J. Cult. Herit. 2012. V. 13. Iss. 3. Suppl. P. 118–122.

Björdal C. G., Daniel G., Nilsson T. Depth of burial, an important factor in controlling bacterial decay of waterlogged archaeological poles // Int. Biodeterior. Biodegr. 2000. V. 45. Iss. 1–2. P. 15–26.

Björdal C. G., Nilsson T., Daniel G. Microbial decay of waterlogged archaeological wood found in Sweden. Applicable to archaeology and conservation // Int. Biodeterior. Biodegr. 1999. V. 43. Iss. 1–2. P. 63–73.

Blanchette R. A. A review of microbial deterioration found in archaeological wood from different environments // Int. Biodeterior. Biodegr. 2000. V. 46. Iss. 3. P. 189–204.

Braovac S., Tamburini D., Łucejko J. J., McQueen C., Kutzke H., Colombini M. P. Chemical analyses of extremely degraded wood using analytical pyrolysis and inductively coupled plasma atomic emission spectroscopy // Microchem. J. 2016. V. 124. P. 368–379.

Budrugeac P., Emandi A. The use of thermal analysis methods for conservation state determination of historical and/or cultural objects manufactured from lime tree wood // J. Therm. Anal. Calorim. 2010. V. 101. Iss. 3. P. 881–886.

Campanella L., Tomassetti M., Tomellini R. Thermoanalysis of ancient, fresh and waterlogged woods // J. Therm. Anal. 1991. V. 37. Iss. 8. P. 1923–1932.

Cavallaro G., Donato D.I., Lazzara G., Milioto S. A comparative thermogravimetric study of waterlogged archaeological and sound woods // J. Therm. Anal. Calorim. 2011. V. 104. Iss. 2. P. 451–457.

Colombini M. P., Orlandi M., Modugno F., Tolppa E.-L., Sardelli M., Zoia L., Crestini C. Archaeological wood characterization by PY/GC/MS, GC/MS, NMR and GPC techniques // Microchem. J., 2007. V. 85. Iss. 1. P. 164–173.

Donato D. I., Lazzara G., Milioto S. Thermogravimetric analysis: a tool to evaluate the ability of mixtures in consolidating waterlogged archaeological woods // J. Therm. Anal. Calorim. 2010. V. 101. Iss. 3. P. 1085–1091.

Erdei B., Dolezych M., Hably L. The buried Miocene forest at Bükkábrány, Hungary // Rev. Palaeobot. Palynol. 2009. V. 155. Iss. 1–2. P. 69–79.

Fengel D. Chemische und elektronmikroskopische Untersuchung eines fossilen Fichtenholzes // Holz Roh Werkst. 1971. V. 29. Iss. 8. P. 305–314.

Genestar C., Pons C. Analytical characterization of biodegraded wood from a 15th century Spanish cloister // Microchim Acta. 2008. V. 162. Iss. 3. P. 333–339.

Ghalibaf M., Lehto J., Alén R. Fast pyrolysis of hot-water-extracted and delignified Norway spruce (Picea abies) sawdust by Py–GC/MS // Wood Sci. Technol. 2019. V. 53. Iss. 1. P. 87–100.

Gröcke D. R. The carbon isotope composition of ancient CO2 based on higher-plant organic matter // Philos. Trans. Ser. A. Math. Phys. Eng. Sci. 2002. V. 360. Iss. 1793. P. 633–658.

Gryc V., Sakala J. Identification of fossil trunks from Bükkábrány newly installed in the visitor centre of the Ipolytarnóc Fossils Nature Reserve (Novhrad-Nógrád Geopark) in northern Hungary // Acta Univ. Agr. Silv. Mendel. Brun. 2010. V. 58. Iss. 5. P. 117–122.

Guleria J. S., Awasthi N. Fossil wood and their significance // Curr. Sci. 1997. V. 72. N. 4. P. 248–254.

Guo J., Xiao L., Han L., Wu H., Yang T., Wu S., Yin Y. Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2400 years old // IAWA J. 2019. V. 40. Iss. 4. P. 820–844.

Hámor-Vidó M., Hofmann T., Albert L. In situ preservation and paleoenvironmental assessment of Taxodiacea fossil trees in the Bükkalja Lignite Formation, Bükkábrány open cast mine, Hungary // Int. J. Coal Geol. 2010. V. 81. Iss. 4. P. 203–210.

Hatcher P. G., Lerch H. E., Kotra R.K., Verheyen T. V. Pyrolysis g.c.-m.s. of a series of degraded woods and coalified logs that increase in rank from peat to subbituminous coal // Fuel. 1988. V. 67. Iss. 8. P. 1069-1075.

Hatcher P. G., Lerch H. E., Verheyen T. V. Organic geochemical studies of the transformation of gymnospermous xylem during peatification and coalification to subbituminous coal // Int. J. Coal Geol. 1989. V. 13. Iss. 1–4. P. 65-97.

Ház A., Jablonský M., Orságová A., Šurina I. Characterization of lignins by Py-GC/MS // Renewable energy sources: Proc. 4nd Int. Conf. High Tatras. Slovak Rep., 2013.

Ioelovich M. Thermodynamics of biomass-based solid fuels // Acad. J. Polym. Sci. 2018. V. 2. Iss. 1. P. 555–557.

Karami L., Schmidt O., Fromm J., Klinberg A., Schmitt U. Wood decay characterization of a naturally infected oak wood bridge using PY-GC/MS // Wood Res. 2013. V. 58. N. 4. P. 591–598.

Kázmér M. The Miocene Bükkábrány fossil forest in Hungary – field observations and project outline // Hantkeniana. 2008. V. 6. Iss. 6. P. 229-244.

Kázmér M. Structure of the 7 Ma Bükkábrány fossil forest in Hungary // Jap. J. Histor. Bot. 2011. V. 19. Iss. 1–2. P. 47–54.

Kim Y. S., Singh A. P., Nilsson T. Bacteria as important degraders in waterlogged archaeological woods // Holzforschung. 1996. V. 50. N. 5. P. 389–392.

Krutul D., Radomski A., Zawadzki J., Zielenkiewicz T., Antczak A. Comparison of the chemical composition of the fossil and recent oak wood // Wood Res. 2010. V. 55. N. 3. P. 113–120.

Kubler H. Heat release in thermally disintegrating wood // Wood and Fiber. 1982. V. 14. N. 3. P. 166–177.

Liaw S. S., Perez V. H., Zhou S., Rodriguez-Justo O., Garcia-Perez M. Py-GC/MS studies and principal component analysis to evaluate the impact of feedstock and temperature on the distribution of products during fast pyrolysis // J. Anal. Appl. Pyrol. 2014. V. 109. P. 140–151.

Łucejko J. J., McQueen C. M. A., Sahlstedt M., Modugno F., Colombini M. P., Braovac S. Comparative chemical investigations of alum treated archaeological wood from various museum collections // Herit. Sci. 2021a. V. 9. Iss. 1. Article number: 69. 17 p.

Łucejko J. J., Modugno F., Ribechini E., Río J. C. del. Characterisation of archaeological waterlogged wood by pyrolytic and mass spectrometric techniques // Anal. Chim. Acta. 2009. V. 654. Iss. 1. P. 2634.

Łucejko J. J., Modugno F., Ribechini E., Tamburini D., Colombini M. P. Analytical instrumental techniques to study archaeological wood degradation // Appl. Spectrosc. Rev. 2015. V. 50. Iss. 7. P. 584–625.

Lucejko J. J., Tamburini D., Zborowska M. M., Babiński L., Modugno F., Colombini M. P. Oak wood degradation processes induced by the burial environment in the archaeological site of Biskupin (Poland) // Herit. Sci. 2020. V. 8. Article number: 44. 12 p.

Lucejko J. J., Tamburini D., Modugno F., Ribechini E., Colombini M. P. Analytical pyrolysis and mass spectrometry to characterize lignin in archaeological wood // Appl. Sci. 2021b. V. 11. Iss. 1. Article number: 240. 25 p.

Łucejko J. J., Zborowska M., Modugno F., Colombini M. P., Prądzyński W. Analytical pyrolysis vs. classical wet chemical analysis to assess the decay of archaeological waterlogged wood // Anal. Chim. Acta. 2012. V. 745. P. 7077.

Martínez M. G., Ohra-aho T., Silva Perez D. da, Tamminen T., Dupont C. Influence of step duration in fractionated Py-GC/MS of lignocellulosic biomass // J. Anal. Appl. Pyrol. 2019. V. 137. P. 195202.

Mustoe G. E. Non-mineralized fossil wood // Geosciences. 2018. V. 8. Iss. 6. P. 223.

Nierop K. G. J., Pulleman M. M., Marinissen J. C. Y. Management induced organic matter differentiation in grassland and arable soil: a study using pyrolysis techniques // Soil Biol. Biochem. 2001. V. 33. N. 6. P. 755–764.

Nikolouli K., Pournou A., McConnachie G., Tsiamis G., Mossialos D. Prokaryotic diversity in biodeteriorated wood coming from the Bükkábrány fossil forest // Int. Biodeterior. Biodegr. 2016. V. 108. P. 181–190.

Nilsson T., Björdal C. Culturing wood-degrading erosion bacteria // Int. Biodeterior. Biodegr. 2008. V. 61. Iss. 1. P. 3–10.

Obst J. R. Analytical pyrolysis of hardwood and softwood lignins and its use in lignin type determinations hardwood vessel elements // J. Wood Chem. Technol. 1983. V. 3. Iss. 4. P. 377–397.

Obst J. R., McMillan N. J, Blanchette R. A., Christensen D. J., Faix O., Han J. S., Kuster T. A., Landucci L. L., Newman R. H., Pettersen R. C., Schwandt V. H., Wesolowski M. F. Characterization of Canadian Arctic fossil woods In: Tertiary fossil forests of the Geodetic Hills, Axel Heiberg Island, Arctic Archipelago / R. L. Christie, N. J. McMillan (Eds.). Geol. Surv. Can. 1991. Bull. 403. P. 123–146.

Ozgenc O., Durmaz S., Serdar B., Boyaci I.H., Eksi-Kocak H., Öztürk M. Characterization of fossil Sequoioxylon wood using analytical instrumental techniques // Vibr. Spectrosc. 2018. V. 96. P. 10–18.

Pouwels A. D., Tom A., Eijkel G. B., Boon J. J. Characterization of beech wood and its holocellulose and xylan fractions by pyrolysis-gas chromatography-mass spectrometry // J. Anal. Appl. Pyrol. 1987. V. 11. P. 417–436.

Romagnoli M., Galott G., Antonell F., Sidot G., Huma M., Kržišni D., Čufa K., Petriagg B. D. Micro-morphological, physical and thermogravimetric analyses of waterlogged archaeological wood from the prehistoric village of Gran Carro (Lake Bolsena-Italy) // J. Cult. Herit. 2018. V. 33. P. 30–38.

Romero L. M., Smith III T. J., Fourqurean J. W. Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest // J. Ecol. 2005. V. 93. Iss. 3. P. 618–631.

Rowell R. M., Dietenberger M. A. Thermal properties, combustion, and fire retardancy of wood In: Handbook of wood chemistry and wood composites. 2nd ed. / R. M. Rowell (Ed.). New York: CRC Press, 2013. P. 127–149.

Stankiewicz B., Mastalerz M., Kruge M., Bergen P. van, Sadowska A. A comparative study of modern and fossil cone scales and seeds of conifers: A geochemical approach // New Phytol. 1997. V. 135. Iss. 2. P. 375–393.

Saiz-Jimenez C., Boon J. J., Hedges J. I., Hessels J. K. C., De Leeuw J. W. Chemical characterization of recent and buried woods by analytical pyrolysis: Comparison of pyrolysis data with 13C NMR and wet chemical data // J. Analyt. Appl. Pyrol. 1987. V. 11. P. 437–450.

Saiz-Jimenez C., De Leeuw J. W. Lignin pyrolysis products: Their structures and their significance as biomarkers // Org. Geochem. 1986. V. 10. Iss. 4–6. P. 869–876.

Shen D., Jin W., Hu J., Xiao R., Luo K. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions // Renew. Sust. Energ. Rev. 2015. V. 51. P. 761–774.

Silva R. L., Duarte L. V., Filho J. G. M. Optical and geochemical characterization of Upper Sinemurian (Lower Jurassic) fossil wood from the Lusitanian Basin (Portugal) // Geochem. J. 2013. V. 47. Iss. 5. P. 489–498.

Singh A. P. A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments // J. Cult. Herit. 2012. V. 13. Iss. 3. Suppl. P. 16–20.

SriBala G., Toraman H. E., Symoens S., Déjardin A., Pilate G., Boerjan W., Ronsse F., Van Geem K. M., Marin G. B. Analytical Py-GC/MS of genetically modified poplar for the increased production of bio-aromatics // Comput. Struct. Biotechnol. J. 2019. V. 17. P. 599610.

Subagyono R. R. D. J. N., Qi Y., Chaffee A. L., Amirta R., Marshall M. Pyrolysis-GC/MS analysis of fast growing wood Macaranga species // Indones. J. Sci. Technol. 2021. V. 6. N. 1. P. 141–158.

Tamburini D., Łucejko J. J., Modugno F., Colombini M. P. Characterisation of archaeological waterlogged wood from Herculaneum by pyrolysis and mass spectrometry // Int. Biodeterior. Biodegr. 2014. V. 86. Part B. P. 142–149.

Tamburini D., Łucejko J. J., Zborowska M., Modugno F., Prądzyński W., Colombini M. P. Archaeological wood degradation at the site of Biskupin (Poland): Wet chemical analysis and evaluation of specific Py-GC/MS profiles // J. Analyt. Appl. Pyrol. 2015. V. 115. P. 7–15.

Tamburini D., Łucejko J. J., Ribechini E., Colombini M. P. New markers of natural and anthropogenic chemical alteration of archaeological lignin revealed by in situ pyrolysis/silylation-gas chromatography-mass spectrometry // J. Analyt. Appl. Pyrol. 2016. V. 118. P. 249–258.

Tomassetti M., Campanella L., Tomellini R., Meucci C. Thermogravimetric analysis of fresh and archeological waterlogged woods // Thermochim. Acta. 1987. V. 117. P. 297–315.

Traoré M., Kaal J., Cortizas A. M. Application of FTIR spectroscopy to the characterization of archeological wood // Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2016. V. 153. P. 6370.

Traoré M., Kaal J., Cortizas A. M. Potential of pyrolysis-GC–MS molecular fingerprint as a proxy of Modern Age Iberian shipwreck wood preservation // J. Anal. Appl. Pyrol. 2017. V. 126. P. 1–13.

Uçar G., Meier D., Faix O., Wegener G. Analytical pyrolysis and FTIR spectroscopy of fossil Sequoiadendron giganteum (Lindl.) wood and MWLs isolated hereof // Holz Roh Werkst. 2005. V. 63. Iss. 1. P. 57–63.

Voitkevich O. V., Kabo G. J., Blokhin A. V., Paulechka Y. U., Shishonok M. V. Thermodynamic properties of plant biomass components. Heat capacity, combustion energy, and gasification equilibria of lignin // J. Chem. Eng. Data. 2012. V. 57. Iss. 7. P. 1903–1909.

Zoia L., Tamburini D., Orlandi M., Łucejko J. J., Salanti A., Tolppa E.-L., Modugno F., Colombini M. P. Chemical characterisation of the whole plant cell wall of archaeological wood: an integrated approach // Analyt. Bioanalyt. Chem. 2017. V. 409. Iss. 17. P. 4233–4245.


Вернуться к списку статей