RU EN

Меню страницы:

Статьи 2022 г.

Ключевые слова:
ход роста древостоев, средняя высота, динамические уравнения

Реферат

УДК 502/504:630*53:54

Лебедев А. В., Кузьмичев В. В. Построение бонитетной шкалы с использованием обобщенного алгебраического разностного подхода // Сибирский лесной журнал. 2022. № 3. С. …

DOI: 10.15372/SJFS20220307

© Лебедев А. В., Кузьмичев В. В., 2022

Основой прогноза роста древостоев являются бонитетные шкалы. Расширение знаний о процессах функционирования лесных экосистем, характере изменений в процессе роста морфолого-таксационных показателей деревьев и древостоев, их взаимосвязей и взаимообусловленностей и создание более пригодного для описания биологических процессов математического аппарата и соответствующего программного обеспечения формируют предпосылки для постановки и решения проблемы прогноза роста древостоев на более высоком методическом уровне. Цель работы – оценка прогностической способности уравнений роста, полученных с использованием обобщенного алгебраического разностного подхода (GADA), для описания хода роста древостоев по средней высоте и построения бонитетной шкалы. Данными для исследования послужили общие таблицы хода роста полных (нормальных) сосновых древостоев Северной Евразии. В общей сложности анализируются 25 уравнений, полученных с помощью подхода GADA. Сравнительный анализ показал, что наилучшее качество выравнивания данных обеспечивает уравнение, основанное на функции Митчерлиха (известной также как Дракина-Вуевского, Чапмана-Ричардса) с заменой параметров, отвечающих за предельные значения высоты и форму кривой. Данная модель полиморфна, имеет форму сигмовидной кривой и переменные асимптоты, т.е. учитывает большинство предъявляемых свойств к моделям хода роста по высоте. Ошибки модели зависят от величины временного интервала прогнозирования и уровня производительности древостоя. С увеличением срока прогнозирования происходит увеличение ошибки. Для всех интервалов дальности прогноза получено значение средней абсолютной ошибки, не превышающее 2.01 %. Наибольшей средней абсолютной ошибкой прогноза (1.1–2.2 %) характеризуются крайние классы бонитета (Ib, V, Va и Vb). Рассмотренная в исследовании методика может быть применена для разработки моделей хода роста таксационных показателей других лесообразующих пород России.

Текст статьи


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Выводцев Н. В. Общие закономерности роста лиственничников Дальнего Востока: автореф. дис. … канд. с.-х. наук. Красноярск: СибТИ, 1984. 21 с. [Vyvodtsev N. V. Obshchie zakonomernosti rosta listvennichnikov Dal’nego Vostoka: avtoref. dis. … kand. s.-kh. nauk (General patterns of growth of larch forests in the Far East: Cand. Agr. Sci. (PhD) thesis). Krasnoyarsk: SibTI (Sib. Inst. Technol.), 1984. 21 p. (in Russian)].

Дубенок Н. Н., Кузьмичев В. В., Лебедев А. В. Результаты экспериментальных работ за 150 лет в лесной опытной даче Тимирязевской сельскохозяйственной академии. М.: Наука, 2020. 382 с. [Dubenok N. N., Kuzmichev V. V., Lebedev A. V. Rezul’taty eksperimental’nykh rabot za 150 let v lesnoy opytnoy dache Timiryazevskoy sel’skokhozyaystvennoy akademii (The results of experimental work over 150 years in the Forest Experimental Area of the Timiryazev Agricultural Academy). Moscow: Nauka (Science), 2020. 382 p. (in Russian)].

Кузьмичев В. В. Закономерности роста древостоев. Новосибирск: Наука. Сиб. отд-ние, 1977. 160 с. [Kuzmichev V. V. Zakonomernosti rosta drevostoev (Regularities of growth of tree stands). Novosibirsk: Nauka (Science). Sib. Br., 1977. 160 p. (in Russian)].

Кузьмичев В. В. Закономерности динамики древостоев: принципы и модели. Новосибирск: Наука, 2013. 207 с. [Kuzmichev V. V. Zakonomernosti dinamiki drevostoev: printsipy i modeli (Regularities of dynamics of tree stands: principles and models). Novosibirsk: Nauka (Science), 2013. 207 p. (in Russian)].

Лебедев А. В. Динамика продуктивности и средообразующих свойств древостоев в условиях городской среды (на примере лесной опытной дачи Тимирязевской академии): автореф. дис. … канд. с.-х. наук: 06.03.02. СПб: СПбГЛТУ, 2019. 20 с. [Lebedev A. V. Dinamika produktivnosti i sredoobrazuyushchikh svoystv drevostoev v usloviyakh gorodskoy sredy (na primere lesnoy opytnoy dachi Timiryazevskoy akademii): avtoref. dis. … kand. s.-kh. nauk. (Dynamics of productivity and environmental properties of forest stands in the conditions of the urban environment (on the example of the forest experimental area of the Timiryazev agriculture academy: Cand. Agr. Sci. (PhD) thesis). St. Petersburg: St. Petersburg St. For. Engineer. Univ., 2019. 20 p. (in Russian)].

Хлюстов В. К. Комплексная оценка и управление древесными ресурсами: модели-нормативы-технологии. Кн. 1. М.: РГАУ-МСХА им. К. А. Тимирязева, 2015. 389 с. [Khlyustov V. K. Kompleksnaya otsenka i upravlenie drevesnymi resursami: modeli-normativy-tekhnologii. Kn. 1 (Comprehensive assessment and management of wood resources: models-standards-technologies. Book 1). Moscow: RGAU-MSKhA im. K. A. Timiryazeva (K. A. Timiryazev Rus. St. Agr. Univ.), 2015. 389 p. (in Russian)].

Хлюстов В. К., Лебедев А. В. Товарно-денежный потенциал древостоев и оптимизация лесопользования. Иркутск: Мегапринт, 2017. 328 с. [Khlyustov V. K., Lebedev A. V. Tovarno-denezhny potentsial drevostoev i optimizatsiya lesopol’zovaniya (Commodity-monetary potential of tree stands and optimization of forest management). Irkutsk: Megaprint, 2017. 328 p. (in Russian)].

Швиденко А. З., Щепащенко Д. Г., Нильсон С., Булуй Ю. И. Таблицы и модели хода роста и продуктивности насаждений основных лесообразующих пород Северной Евразии (нормативно-справочные материалы). Изд. 2-е, доп. М.: Междунар. ин-т приклад. систем. анализа, 2008. 886 с. [Shvidenko A. Z., Schepaschenko D. G., Nilsson S., Buluy Yu. I. Tablitsy i modeli khoda rosta i produktivnosti nasazhdeniy osnovnykh lesoobrazuyushchikh porod Severnoy Evrazii (Tables and models of growth and productivity of forests of major forest forming species of Northern Eurasia). Moscow, 2008. 886 p. (in Russian with English title, summary and contents)].

Allen II M. G., Antón-Fernández C., Astrup R. A stand-level growth and yield model for thinned and unthinned managed Norway spruce forests in Norway // Scand. J. For. Res. 2020. V. 35 Iss. 5–6. P. 238–251.

Amaro A., Reed D., Tomé M., Themido I. Modeling dominant height growth: Eucalyptus plantations in Portugal // For. Sci. 1998. V. 44. Iss. 1. P. 37–46.

Bailey R. L., Clutter J. L. Base-age invariant polymorphic site curves // For. Sci. 1974. V. 20. Iss. 2. P. 155–159.

Castedo-Doradoa F., Diéguez-Aranda U., Barrio-Anta M., Álvarez-Gonzálezb J. G. Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA // Ann. For. Sci. 2007. V. 64. P. 609–619.

Cieszewski C. J. Comparing fixed- and variable-base-age site equations having single versus multiple asymptotes // For. Sci. 2002. V. 48. Iss. 1. P. 7–23.

Cieszewski C. J. Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y3 = (axm) / (c + xm-1), a simplified mixed model and scant subalpine fir data // For. Sci. 2003. V. 49. Iss. 4. P. 539–554.

Cieszewski C. J., Bailey R. L. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes // For. Sci. 2000. V. 46. Iss. 1. P. 116–126.

Cieszewski C. J., Bella I. E. Polymorphic height growth and site index curves for lodgepole pine in Alberta // Can. J. For. Res. 1989. V. 19. N. 9. P. 1151–1160.

Cieszewski C. J., Strub M., Zasada M. New dynamic site equation that fits best the Schwappach data for Scots pine (Pinus sylvestris L.) in Central Europe // For. Ecol. Manag. 2007. V. 243. Iss. 1. P. 83–93.

Elfving B., Kiviste A. Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden // For. Ecol. Manag. 1997. V. 98. Iss. 2–3. P. 125–134.

Ercanli Í., Kahriman A., Yavuz H. Dynamic base-age invariant site index models based on generalized algebraic difference approach for mixed Scots pine (Pinus sylvestris L.) and Oriental beech (Fagus orientalis Lipsky) stands // Turk J. Agr. For. 2014. V. 38. P. 134–147.

Hevia A., Vilčko F., Álvarez-González J. G. Dynamic stand growth model for Norway spruce forests based on long-term experiments in Germany // Recursos Rurais. 2013. N. 9. P. 45–54.

Hossfeld J. W. Mathematik für Forstmänner, Ökonomen und Cameralisten. Gotha, 1822. 310 р.

Jarosz K., Klapec B. Modelowanie wzrostu drzewostanow z wykorzystaniem funkcji Gompertza // Sylwan. 2002. N. 4. P. 35–42.

Korsuň F. Život normálního porostu ve vzorcích // Lesnická práce. 1935. V. 14. P. 289–300.

Lundqvist B. On the height growth in cultivated stands of pine and spruce in Northern Sweden // Medd Fran Statens Skogforsk. 1957. V. 47. P. 1–64.

Neter J., Kutner M. H., Nachtsheim C. J., Wasserman W. Applied linear statistical models. Chicago, IL: Irwin, 1996. 1408 p.

Nunes L., Patrício M., Tomé J., Tomé M. Modeling dominant height growth of maritime pine in Portugal using GADA methodology with parameters depending on soil and climate variables // Ann. For. Sci. 2011. V. 68. P. 311–323.

Richards F. J. A flexible growth function for empirical use // J. Exp. Bot. 1959. V. 10. N. 29. P. 290–301.

Ryan T. P. Modern regression methods. New York: John Wiley & Sons, 1997. 529 p.

Schumacher F. X. A new growth curve and its application to timber yield studies // J. For. 1939. V. 37. N. 3. P. 819–820.

Seki M., Sakici O. E. Dominant height growth and dynamic site index models for Crimean pine in the Kastamonu-Tasköprü region of Turkey // Can. J. For. Res. 2017. V. 47. Iss. 11. P. 1441–1449.

Stankova T. V. A dynamic whole-stand growth model, derived from allometric relationships // Silva Fenn. 2016. V. 50. N. 1. Article id 1406. 21 p.

Tomé M. Modelação do crescimento da árvore individual em povoamentos de Eucalyptus globulus Labill. (1ª rotação). PhD Thesis. Região Centro de Portugal. Univ. Técnica de Lisboa, 1989. 230 p.

Nunes L., Patrício M., Tomé N. P., Tomé M. Modeling dominant height growth of maritime pine in Portugal using GADA methodology with parameters depending on soil and climate variables // Ann. For. Sci. 2011. V. 68. Iss. 2. P. 311–323.

Vargas-Larreta B., Aguirre-Calderón O. A., Corral-Rivas J. J., Crecente-Campo F., Diéguez-Aranda U. A dominant height growth and site index model for Pinus pseudostrobus Lindl. in northeastern Mexico // Agrociencia. 2013. V. 47. P. 1–10.

Yang R. C., Kozak A., Smith J. H. The potential of Weibull-type functions as flexible growth curves // Can. J. For. Res. 1978. V. 8. N. 4. P. 424–431.


Вернуться к списку статей