RU EN

Меню страницы:

Статьи 2025 г.

Авторы:
Ключевые слова:
расстояние переноса, функция переноса, функция реакции, генетические эффекты, фенотипическая пластичность, адаптация видов, климатически оптимизированное лесное хозяйство

Реферат

УДК 630*181+630*232.1

Лебедев А. В. Методы моделирования реакции деревьев на климатические изменения по данным испытаний географических культур // Сибирский лесной журнал. 2025. № 2. С. …

DOI: 10.15372/SJFS20250201

EDN: …

© Лебедев А. В., 2025

Происходящее в последние десятилетия потепление климата значительно воздействует на популяции деревьев, в результате чего произойдет или их адаптация к новым условиям, или гибель. Результаты опытов по выращиванию географических культур могут служить надежной основой для изучения реакции деревьев на изменение окружающей среды. С начала 1990-х годов в зарубежных странах большое развитие получило моделирование фенотипических признаков популяций от климатических факторов (мест происхождения и испытания) и использование таких моделей в практике ведения лесного хозяйства. Целью обзора является рассмотрение основных подходов к моделированию реакции деревьев на климатические изменения по данным испытаний географических культур и обсуждение их применения для перехода к климатически оптимизированному лесному хозяйству. Как индивидуальные функции переноса и реакции, так и более сложные модели (обобщенная функция переноса и универсальные функции реакции и переноса) относятся к полезным инструментам для решения задач, связанных с прогнозированием реакции популяций деревьев (рост, продуктивность и выживаемость) на климатические изменения и оценкой их адаптационного потенциала, с разработкой рекомендаций по переброске семян (включая вспомогательную миграцию) и климатически оптимального лесосеменного районирования, по сохранению и повышению ресурсного и экологического потенциала лесов будущего. Результаты исторических и современных опытов по испытанию географических культур в условиях стремительно происходящего потепления климата приобретают особую научную и практическую ценность. Разработка надежных прогностических моделей реакции популяций лесообразующих видов деревьев на изменение условий окружающей среды возможна при наличии репрезентативных данных об их фенотипической изменчивости. Для этого требуется формирование баз данных, объединяющих результаты опытов по испытанию географических культур.

Текст статьи


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Гагарин Ю. Н. Проблемы государственно-правового управления в сфере лесного семеноводства // Вопр. лесн. науки. 2024. № 4. Статья № 154 [Gagarin Yu. N. Problemy gosudarstvenno-pravovogo upravleniya v sfere lesnogo semenovodstva (Problems of state and legal administration in the sphere of forest seed production) // Vopr. lesn. nauki (For. Sci. Iss.). 2024. N. 4. Article number 154 (in Russian with English abstract)].

Кузьмин С. Р., Кузьмина Н. А. Доля прямоствольных деревьев у климатипов сосны обыкновенной в географических культурах в Сибири // Сиб. лесн. журн. 2024. № 6. С. 17–24 [Kuzmin S. R., Kuzmina N. A. Dolya pryamostvol’nykh derev’ev u klimatipov sosny obyknovennoy v geograficheskikh kul’turakh v Sibiri (Proportion of straight-stemmed trees of Scots pine climatypes in the provenance trial in Siberia) // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2024. N. 6. P. 17–24 (in Russian with English abstract and references)].

Кузьмин С. Р., Кузьмина Н. А. Закономерности роста климатипов сосны обыкновенной в разных почвенных условиях в географических культурах // Сиб. экол. журн. 2023. Т. 30. № 5. С. 692–704 [Kuzmin S. R., Kuzmina N. A. Zakonomernosti rosta klimatipov sosny obyknovennoy v raznykh pochvennykh usloviyakh v geograficheskikh kul’turakh (Growth regularities of Scots pine climatypes in the provenance trial under different soil conditions) // Sib. ekol. zhurn. (Sib. Ecol. J.). 2023. V. 30. Iss. 5. P. 692–704 (in Russian with English abstract)].

Кузьмина Н. А., Кузьмин С. Р. Устойчивость сосны обыкновенной разного происхождения к грибным патогенам в географических культурах Приангарья // Хвойные бореальной зоны. 2007. Т. 24. № 4–5. С. 454–460 [Kuzmina N. A., Kuzmin S. R. Ustoychivost’ sosny obyknovennoy raznogo proiskhozhdeniya k gribnym patogenam v geograficheskikh kul’turakh Priangar’ya (Resistance of Scots pine of different origin to fungal pathogens in geographical crops of the Angara region) // Khvoynye boreal’noy zony (Conifers of the Boreal Zone). 2007. V. 24. Iss. 4–5. P. 454–460 (in Russian with English abstract)].

Кузнецова Г. В. Изменчивость качества семян у климатипов сосны корейской в географических культурах // Бюлл. гос. Никит. бот. сада. 2009. № 99. С. 10–13 [Kuznetsova G. V. Izmenchivost’ kachestva semyan u klimatipov sosny koreyskoy v geograficheskikh kul’turakh (Variability of seed quality for climatic types of Korean pine in geographical crops) // Byull. gos. Nikit. bot. sada (Bull. St. Nikitsky Bot. Garden). 2009. N. 99. P. 10–13 (in Russian with English abstract)].

Кулаков Е. Е., Сиволапов А. И. Географические культуры лиственницы в Воронежской области. Воронеж: Воронеж. гос. лесотех. ун-т им. Г. Ф. Морозова, 2023. 139 с. [Kulakov E. E., Sivolapov A. I. Geograficheskie kul’tury listvennitsy v Voronezhskoy oblasti (Geographical crops of larch in Voronezh Oblast). Voronezh: Voronezh. gos. lesotekh. un-t im. G. F. Morozova (Voronezh St. For. Engineer. Univ. named after G. F. Morozov), 2023. 139 p. (in Russian)].

Лебедев А. В. Эмпирические модели роста и производительности древостоев по данным долговременных наблюдений в условиях антропогенных воздействий и климатических изменений: дис. ... д-ра с.-х. наук: 4.1.6. М.: Рос. гос. агр. ун-т – МСХА им. К. А. Тимирязева, 2023. 425 с. [Lebedev A. V. Empiricheskie modeli rosta i proizvoditel’nosti drevostoev po dannym dolgovremennykh nablyudeniy v usloviyakh antropogennykh vozdeystviy i klimaticheskikh izmeneniy: dis. … d-ra s.-kh. nauk: 4.1.6 (Empirical models of growth and yield of forest stands based on long-term observations under conditions of anthropogenic influences and climate change: Dr Agr. Sci. (DSc) thesis). Moscow: Ros. gos. agr. un-t im K. A. Timiryazeva (Rus. St. Agr. Univ. – Moscow Timiryazev Agr. Acad.), 2023. 425 p. (in Russian)].

Матвеев С. М. Климатический сигнал в радиальном приросте сосновых древостоев модальных типов леса Воронежской области // Лесохоз. инф. 2017. № 1. С. 99–108 [Matveev S. M. Klimaticheskiy signal v radial’nom priroste sosnovykh drevostoev modal’nykh tipov lesa Voronezhskoy oblasti (The signal of climate in the radial increment of pine tree stands in modal forest types of Voronezh Oblast) // Lesokhoz. inf. (For. Inf.). 2017. N. 1. P. 99–108 (in Russian with English abstract)].

Наквасина Е. Н., Юдина О. А., Прожерина Н. А., Камалова И. И., Минин Н. С. Географические культуры в ген-экологических исследованиях на европейском Севере. Архангельск: Сев. (Аркт.) фед. ун-т им. М. В. Ломоносова, 2008. 308 с. [Nakvasina E. N., Yudina O. A., Prozherina N. A., Kamalova I. I., Minin N. S. Geograficheskie kul’tury v gen-ekologicheskikh issledovaniyakh na evropeyskom Severe (Geographical crops in gene-ecological studies in the European North). Arkhangelsk: Sev. (Arkt.) fed. un-t im. M. V. Lomonosova (North (Arct.) Fed. Univ. named after M. V. Lomonosov), 2008. 308 p. (in Russian)].

Наквасина Е. Н., Юдина О. А., Покатило А. В. Ростовая и репродуктивная реакции Picea abies (L.) Karst. x P. obovata Ledeb. при имитации потепления климата // Вестн. Сев. (Аркт.) фед. ун-та. Сер.: Естеств. науки. 2016. № 1. С. 89–96 [Nakvasina E. N., Yudina O. A., Pokatilo A. V. Rostovaya i reproduktivnaya reaktsii Picea abies (L.) Karst. x P. obovata Ledeb. pri imitatsii potepleniya klimata (Growth and reproductive response of Picea abies (l.) Karst. x P. obovata Ledeb. in climate change simulation) // Vestn. Sev. (Arkt.) fed. un-ta. Ser.: Estestv. nauki (Bull. North (Arct.) Fed. Univ. named after M. V. Lomonosov (Arct. Environ. Res.). 2016. N. 1. P. 89–96 (in Russian with English abstract)].

Наквасина Е. Н., Прожерина Н. А., Чупров А. В., Беляев В. В. Реакция роста сосны обыкновенной на климатические изменения в широтном градиенте // ИВУЗ. Лесн. журн. 2018. № 5 (365). С. 82–93 [Nakvasina E. N., Prozherina N. A., Chuprov A. V., Belyaev V. V. Reaktsiya rosta sosny obyknovennoy na klimaticheskie izmeneniya v shirotnom gradiente (Growth response of Scots pine to climate change in the latitudinal gradient) // IVUZ. Lesn. zhurn. (For. J.). 2018. N. 5 (365). P. 82–93 (in Russian with English abstract)].

Николаева М.А., Жигунов А.В., Голиков А.М. 36-летний опыт изучения географических культур сосны обыкновенной в Псковской области // ИВУЗ. Лесн. журн. 2016. № 5 (353). С. 22–33 [Nikolaeva M. A., Zhigunov A. V., Golikov A. M. 36-letniy opyt izucheniya geograficheskikh kul’tur sosny obyknovennoy v Pskovskoy oblasti (36 years of Scots pine provenance trials experiment in Pskov Oblast) // IVUZ. Lesn. zhurn. (For. J.). 2016. N. 5 (353). P. 22–33 (in Russian with English abstract)].

Пальцев А. М., Мерзленко М. Д. Роль географических культур в лесокультурном деле. М.: Моск. лесотех. ин-т, 1990. 54 с. [Pal’tsev A. M., Merzlenko M. D. Rol’ geograficheskikh kul’tur v lesokul’turnom dele (The role of geographical crops in forest crop busuness). Moscow: Mosk. lesotekh. in-t (Moscow For. Engineer. Inst.), 1990. 54 p. (in Russian)].

Проказин А. Е. Географические культуры сосны обыкновенной и вопросы лесосеменного районирования в центральном районе зоны смешанных лесов: дис. ... канд. с.-х. наук: 06.03.01. М.: Моск. лесотех. ин-т, 1983. 367 с. [Prokazin A. E. Geograficheskie kul’tury sosny obyknovennoy i voprosy lesosemennogo rayonirovaniya v tsentral’nom rayone zony smeshannykh lesov: dis. ... kand. s.-kh. nauk: 06.03.01 (Geographical crops of Scots pine and issues of forest seed zoning in the Central region of the mixed forest zone: Cand. Agr. Sci. (PhD) thesis: For. Crops, Selection Seed Growing), Moscow: Mosk. lesotekh. in-t (Moscow For. Engineer. Inst.), 1983. 367 p. (in Russian)].

Проказин Е. П. Изучение имеющихся и создание новых географических культур (программа и методика работ). Пушкино: ВНИИЛМ, 1972. 52 с. [Prokazin E. P. Izuchenie imeyushchikhsya i sozdanie novykh geograficheskikh kul’tur (programma i metodika rabot) (Study of existing and creation of new geographical crops (program and methods of studies)). Pushkino: VNIILM, 1972. 52 p. (in Russian)].

Румянцев Д. Е., Сидоренков В. М., Папулов Е. С., Воробьева Н. С. Связь изменчивости радиального прироста сосны кедровой сибирской с биометрическими и климатическими показателями // Экол. монит. и модел. экосист. 2022. Т. 33. № 1–2. С. 20–37 [Rumyantsev D. E., Sidorenkov V. M., Papulov E. S., Vorob’eva N. S. Svyaz’ izmenchivosti radial’nogo prirosta sosny kedrovoy sibirskoy s biometricheskimi i klimaticheskimi pokazatelyami (Relationship of the variability of the radial growth of Siberian stone pine with biometric and climatic indicators) // Ekol. monit. i model. ekosist. (Ecol. Monit. Model. Ecosyst.). 2022. V. 33. N. 1–2. P. 20–37 (in Russian with English abstract)].

Санников С. Н., Петрова И. В., Санникова Н. С., Афонин А. Н., Чернодубов А. И., Егоров Е. В. Генетико-климатолого-географические принципы семенного районирования сосновых лесов России // Сиб. лесн. журн. 2017. № 2. С. 19–30 [Sannikov S. N., Petrova I. V., Sannikova N. S., Afonin A. N., Chernodubov A. I., Egorov E. V. Genetiko-klimatologo-geograficheskie printsipy semennogo rayonirovaniya sosnovykh lesov Rossii (Genetic-climatologic-geographical principles of seed zoning of pine forests in Russia) // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2017. N. 2. P. 19–30 (in Russian with English abstract)].

Сапанов М. К. Климатогенные факторы внезапного изменения хода роста дерева // Поволж. экол. журн. 2019. № 2. С. 253–263 [Sapanov M. K. Klimatogennye faktory vnezapnogo izmeneniya khoda rosta dereva (Climatic factors of a sudden change of tree growth) // Povolzh. ekol. zhurn. (Povolzhskiy Ecol. J.). 2019. N. 2. P. 253–263 (in Russian with English abstract)].

Сеннов С. Н. Современные тенденции роста лесов и их возможные последствия // Изв. СПбЛТА. 2000. № 166. С. 13–16 [Sennov S. N. Sovremennye tendentsii rosta lesov i ikh vozmozhnye posledstviya (Current trends in forest growth and their possible consequences) // Izv. SPbLTA (Proc. St. Petersburg For. Engineer. Acad.). 2000. N. 166. P. 13–16 (in Russian with English abstract)].

Тараканов В. В., Паленова М. М., Паркина О. В., Роговцев Р. В., Третьякова Р. А. Лесная селекция в России: достижения, проблемы, приоритеты (обзор) // Лесохоз. инф. 2021. № 1. С. 100–143 [Tarakanov V. V., Palenova M. M., Parkina O. V., Rogovtsev R. V., Tret’yakova R. A. Lesnaya selektsiya v Rossii: dostizheniya, problemy, prioritety (obzor) (Forest tree breeding in Russia: achievements, challenges, priorities (overview)) // Lesokhoz. inf. (For. Inf.). 2021. N. 1. P. 100–143 (in Russian with English abstract)].

Федорков А. Л. Лесосеменное районирование сосны обыкновенной на севере Европы // Сиб. лесн. журн. 2020. № 2. С. 63–68 [Fedorkov A. L. Lesosemennoe rayonirovanie sosny obyknovennoy na severe Evropy (Seed zoning of Scots pine in the North of Europe) // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2020. N. 2. P. 63–68 (in Russian with English abstract)].

Царев А. П., Лаур Н. В., Царев В. А., Царева Р. П. Современное состояние лесной селекции в Российской Федерации: тренд последних десятилетий // ИВУЗ. Лесн. журн. 2021. № 6 (384). С. 38–55 [Tsarev A. P., Laur N. V., Tsarev V. A., Tsareva R. P. Sovremennoe sostoyanie lesnoy selektsii v Rossiyskoy Federatsii: trend poslednikh desyatiletiy (The current state of forest breeding in the Russian Federation: the trend of recent decades) // IVUZ. Lesn. zhurn. (For. J.). 2021. N. 6 (384). P. 38–55 (in Russian with English abstract)].

Чернодубов А. И., Галдина Т. Е., Смогунова О. А. Географические культуры сосны обыкновенной на юге Русской равнины. Воронеж: Воронеж. гос. мед. ун-т им. Н. Н. Бурденко, 2005. 128 с. [Chernodubov A. I., Galdina T. E., Smogunova O. A. Geograficheskie kul’tury sosny obyknovennoy na yuge Russkoy ravniny (Geographical crops of Scots pine in the south of the Russian Plain). Voronezh: Voronezh. gos. med. un-t im. N. N. Burdenko (Voronezh St. Med. Univ. named after N. N. Burdenko), 2005. 128 p. (in Russian)].

Шутяев А. М. Изменчивость хвойных видов в испытательных культурах Центрального Черноземья. М.: НИИ лесн. ген., 2007. 296 с. [Shutyaev A. M. Izmenchivost’ khvoynykh vidov v ispytatel’nykh kul’turakh Tsentral’nogo Chernozem’ya (Variability of coniferous species in test crops of the Central Black Earth Region). Moscow: NII lesn. gen. (Sci. Res. Inst. For. Gen.), 2007. 296 p. (in Russian)].

Aitken S. N., Yeaman S., Holliday J. A., Wang T., Curtis-McLane S. Adaptation, migration or extirpation: climate change outcomes for tree populations // Evol. Appl. 2008. V. 1. Iss. 1. P. 95–111.

Aitken S., Whitlock M. Assisted gene flow to facilitate local adaptation to climate change // Ann. Rev. Ecol. Evol. Syst. 2013. V. 44. P. 367–388.

Alekseev A. S., Sharma S. K. Long-term growth trends analysis of Norway spruce stands in relation to possible climate change: case study of Leningrad region // IVUZ. Lesn. Zhurn. (For. J.). 2020. N. 3 (375). P. 42–54.

Andalo C., Beaulieu J., Bousquet J. The impact of climate change on growth of local white spruce populations in Québec, Canada // For. Ecol. Manag. 2005. V. 205. P. 169–182.

Beaton J., Perry A., Cottrell J., Iason G., Stockan J., Cavers S. Phenotypic trait variation in a long-term multisite common garden experiment of Scots pine in Scotland // Sci. Data. 2022. V. 9. Iss. 1. Article number 671.

Beaulieu J., Perron M., Bousquet J. Multivariate patterns of adaptive genetic variation and seed source transfer in Picea mariana // Can. J. For. Res. 2004. V. 34. N. 3. P. 5310–545.

Beaulieu J., Rainville A. Adaptation to climate change: Genetic variation is both a short- and a long-term solution // The For. Chron. 2005. V. 81. Iss. 5. P. 704–709.

Berlin M., Persson T., Jansson G., Haapanen M., Ruotsalainen S., Bärring L., Andersson Gull B. Scots pine transfer effect models for growth and survival in Sweden and Finland // Silva Fenn. 2016. V. 50. N. 3. Article 1562.

Boshier D., Broadhurst L., Cornelius J., Gallo L., Koskela J., Loo J., Petrokofsky G., St Clair B. Is local best? Examining the evidence for local adaptation in trees and its scale // Environ. Evidence. 2015. V. 4. Article number 20.

Bowditch E., Santopuoli G., Binder F., del Río M., La Porta N., Kluvankova T., Lesinski J., Motta R., Pach M., Panzacchi P., Pretzsch H., Temperli C., Tonon G., Smith M., Velikova V., Weatherall A., Tognetti R. What is climate-smart forestry? A definition from a multinational collaborative process focused on mountain regions of Europe // Ecosyst. Serv. 2020. V. 43. Article number 101113.

Bower A. D., Aitken S. N. Ecological genetics and seed transfer guidelines in Pinus albicaulis (Pinaceae) // Amer. J. Bot. 2008. V. 95. Iss. 1. P. 66–76.

Bower A. D., Clair J. B. S., Erickson V. Generalized provisional seed zones for native plants // Ecol. Appl. 2014. V. 24. Iss. 5. P. 913–919.

Bucharova A., Durka W., Hölzel N., Kollmann J., Michalski S., Bossdorf O. Are local plants the best for ecosystem restoration? It depends on how you analyze the data // Ecol. Evol. 2017. V. 7. Iss. 24. P. 10683–10689.

Buechling A., Martin P. H., Canham C. D. Climate and competition effects on tree growth in Rocky Mountain forests // J. Ecol. 2017. V. 105. Iss. 6. P. 1636–1647.

Capblancq T., Lachmuth S., Fitzpatrick M. C., Keller S. R. From common gardens to candidate genes: exploring local adaptation to climate in red spruce // New Phytol. 2023. V. 237. Iss. 5. P. 1590–1605.

Carter K. K. Provenance tests as Indicators of growth response to climate change in 10 north temperate tree species // Can. J. For. Res. 1996. V. 26. N. 6. P. 1089–1095.

Castellanos-Acuña D., Vance-Borland K. W., St. Clair J. B., Hamann A., López-Upton J., Gómez-Pineda E., Ortega-Rodríguez J. M., Sáenz-Romero C. Climate-based seed zones for Mexico: Guiding reforestation under observed and projected climate change // New For. 2018. V. 49. Iss. 3. P. 297–309.

Chakraborty D., Wang T., Andre K., Konnert M., Lexer M., Matulla C., Schueler S. Selecting populations for non-analogous climate conditions using universal response functions: The case of Douglas-fir in central Europe // PLoS One. 2015. V. 10. Article number 136357.

Chakraborty D., Schueler S., Lexer M., Wang T. Genetic trials improve the transfer of Douglas-fir distribution models across continents // Ecography. 2019a. V. 42. Iss. 1. P. 88–101.

Chakraborty D., Matulla C., Andre K., Weissenbacher L., Schueler S. Survival of Douglas-fir provenances in Austria: site-specific late and early frost events are more important than provenance origin // Ann. For. Sci. 2019b. V. 76. Iss. 4. Article number 100.

Chakraborty D., Ciceu A., Ballian D., Garzón M. B., Bolte A., Bozic G., Buchacher R., Čepl J., Cremer E., Ducousso A., Gaviria J., George J.P., Hardtke A., Ivankovic M., Klisz M., Kowalczyk J., Kremer A., Lstibůrek M., Longauer R., Mihai G., Nagy L., Petkova K., Popov E., Schirmer R., Skrøppa T., Solvin T. M., Steffenrem A., Stejskal J., Stojnic S., Volmer K., Schueler S. Assisted tree migration can preserve the European forest carbon sink under climate change // Nat. Clim. Change. 2024. V. 14. Iss. 8. P. 845–852.

Chen I.-C., Hill J. K., Ohlemüller R., Roy D. B., Thomas C. D. Rapid range shifts of species associated with high levels of climate warming // Science. 2011. V. 333. Iss. 6045. P. 1024–1026.

Chmura D. J., Modrzyński J. Sensitivity of height growth response to climate change does not vary with age in common garden among Norway spruce populations from elevational gradients // For. Ecol. Manag. 2023. V. 542. Iss. 8. Article number 121118.

Chuine I., Belmonte J., Mignot A. A modelling analysis of the genetic variation of phenology between tree populations // J. Ecol. 2000. V. 88. Iss. 4. P. 561–570.

Cooper L., MacFarlane D. Climate-smart forestry: Promise and risks for forests, society, and climate // PLOS Climate. 2023. V. 2. Iss. 10. Article number 305.

DeMarche M., Doak D., Morris W. Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change // Glob. Change Biol. 2019. V. 25. Iss. 3. P. 775–793.

Des Roches S., Post D. M., Turley N. E., Bailey J. K., Hendry A. P., Kinnison M. T., Schweitzer J. A., Palkovacs E. P. The ecological importance of intraspecific variation // Nat. Ecol. Evol. 2018. V. 2. Iss. 1. P. 57–64.

Di Fabio A., Buttò V., Chakraborty D., O’Neill G. A., Schueler S., Kreyling J. Climatic conditions at provenance origin influence growth stability to changes in climate in two major tree species // Front. For. Glob. Change. 2024. V. 7. Article number 1422165.

Fick S. E., Hijmans R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas // Int. J. Climat. 2017. V. 37. Iss. 12. P. 4302–4315.

Foff V., Weiser F., Foffova E., Gömöry D. Growth response of European larch (Larix decidua Mill.) populations to climatic transfer. A novel approach for controlled pollination in Casuarina equisetifolia // Silv. Gen. 2014. V. 63. Iss. 1–6. P. 67–75.

Ford K. R., Breckheimer I. K., Franklin J. F., Freund J. A., Kroiss S. J., Larson A. J., Theobald E. J., HilleRisLambers J. Competition alters tree growth responses to climate at individual and stand scales // Can. J. For. Res. 2017. V. 47. N. 1. P. 53–62.

Fremout T., Thomas E., Bocanegra-Gonzalez K. T., Aguirre-Morales C. A., Morillo-Paz A. T., Atkinson R., Alcazar-Caicedo C., Kettle C., Gonzalez R., Gonzalez M. A., Gutierrez J. P., Gil-Tobon C., Moscoso-Higuita L. G., Lopez-Lavealle L. L. B., Carvalho D. de, Muys B. Dynamic seed zones to guide climate-smart seed sourcing for tropical dry forest restoration in Colombia // For. Ecol. Manag. 2021. V. 490. Article number 119127.

George J. P., Theroux-Rancourt G., Rungwattana K., Scheffknecht S., Momirovic N., Neuhauser L., Weißenbacher L., Watzinger A., Hietz P. Assessing adaptive and plastic responses in growth and functional traits in a 10-year-old common garden experiment with pedunculate oak (Quercus robur L.) suggests that directional selection can drive climatic adaptation // Evol. Appl. 2020. V. 13. Iss. 9. P. 2422–2438.

Hallingbäck H. R., Burton V., Vizcaíno-Palomar N., Trotter F., Liziniewicz M., Marchi M., Berlin M., Ray D., Benito Garzón M. Managing uncertainty in Scots pine range-wide adaptation under climate change // Front. Ecol. Evol. 2021. V. 9. Article number 724051.

Hiura T., Go S., Iijima H. Long-term forest dynamics in response to climate change in northern mixed forests in Japan: A 38-year individual-based approach // For. Ecol. Manag. 2019. V. 449. Article number 117469.

Hogan J. A., Domke G. M., Zhu K., Johnson D. J., Lichstein J. W. Climate change determines the sign of productivity trends in US forests // PNAS. 2024. V. 121. Iss. 4. Article number 2311132121.

Horváth A., Mátyás Cs. The decline of vitality caused by increasing drought in a beech provenance trial predicted by juvenile growth // South-East Europ. For. 2016. Vol. 7. Iss. 1. P. 21–28.

Huang J. G., Bergeron Y., Berninger F., Zhai L., Tardif J. C., Denneler B. Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest // PloS ONE. 2013. V. 8. Iss. 2. Article number 56758.

Jantke K., Müller J., Trapp N., Blanz B. Is climate-smart conservation feasible in Europe? Spatial relations of protected areas, soil carbon, and land values // Environ. Sci. Policy. 2016. V. 57. P. 40–49.

Johnson G. R., Sorensen F. C., St Clair J. B., Cronn R. C. Pacific northwest forest tree seed zones A template for native plants? // Nat. Plants J. 2004. V. 5. Iss. 2. P. 131–140.

Kapeller S., Lexer M. J., Geburek T., Schüler S. Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate // For. Ecol. Manag. 2012. V. 271. P. 46–57.

Kapeller S., Schuler S., Huber G., Boi G., Wohlgemuth T., Klumpp R. Provenance trials in alpine range – review and perspectives for applications in climate change In: Management Strategies to Adapt Alpine Space Forests to Climate Change Risks. InTech, 2013.

Karger D. N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., Zimmermann N. E., Linder H. P., Kessler M. Climatologies at high resolution for the earth’s land surface areas // Sci. Data. 2017. V. 4. Iss. 1. Article number 170122.

Karger D. N., Schmatz D. R., Dettling G., Zimmermann N. E. High-resolution monthly precipitation and temperature time series from 2006 to 2100 // Sci. Data. 2020. V. 7. Iss. 1. Article number 248.

Kerr G., Stokes V., Peace A., Peace A., Jinks R. Effects of provenance on the survival, growth and stem form of European silver fir (Abies alba Mill.) in Britain // Europ. J. For. Res. 2015. V. 134. Iss. 2. P. 349–363.

Kijowska-Oberc J., Staszak A.M., Kamiński J., Ratajczak E. Adaptation of forest trees to rapidly changing climate // Forests. 2020. V. 11. Iss. 2. Article number 123. 23 p.

Körner C. The cold range limit of trees // Trends Ecol. Evol. 2021. V. 36. Iss. 11. P. 979–989.

Krajmerova D., Longauer R., Pacalaj M., Gomory D. Influence of provenance transfer on the growth and survival of Picea abies provenances // Dendrobiology. 2009. V. 61. P. 17–23.

Kurjak D., Petrík P., Konôpková A. S., Link R. M., Gömöry D., Hajek P., Liesebach M., Leuschner C., Schuldt B. Inter-provenance variability and phenotypic plasticity of wood and leaf traits related to hydraulic safety and efficiency in seven European beech (Fagus sylvatica L.) provenances differing in yield // Ann. For. Sci. 2024. V. 81. Iss. 1. Article number 11.

Kurpisz B., Pawłowski T. A. Epigenetic mechanisms of tree responses to climatic changes // Int. J. Mol. Sci. 2022. V. 23. Iss. 21. Article number 13412.

Kuzmin S. R., Kuzmina N. A. Growth regularities of Scots pine climatypes in the provenance trial under different soil conditions // Contemp. Probl. Ecol. 2023. V. 16. N. 5. P. 645–656 (Original Rus. Text © S. R. Kuzmin, N. A. Kuzmina, 2023, publ. in Sib. Ekol. Zhurn. 2023. V. 30. N. 5. P. 692–704).

Lebedev A. V. Changes in the growth of Scots pine (Pinus sylvestris L.) stands in an urban environment in European Russia since 1862 // J. For. Res. 2023. V. 34. Iss. 4. P. 1279–1287.

Leites L. P., Robinson A. P., Rehfeldt G. E., Marshall J. D., Crookston N. L. Height-growth response to climatic changes differs among populations of Douglas-fir: a novel analysis of historic data // Ecol. Appl. 2012. V. 22. Iss. 1. P. 154–165.

Leites L., Garzón M. B. Forest tree species adaptation to climate across biomes: Building on the legacy of ecological genetics to anticipate responses to climate change // Glob. Change Biol. 2023. V. 29. Iss. 17. P. 4711–4730.

Liepe K. J., Rieckmann C. A., Mittelberg H .S., Liesebach M. Phenotypic variation in 1,100 provenances of Picea abies measured over 50 years on 33 German trial sites // Sci. Data. 2024. V. 11. Iss. 1. Article number 854.

Lindgren D., Ying C. C. A model integrating seed source adaptation and seed use // New For. 2000. V. 20. P. 87–104.

Liziniewicz M., Berlin M., Solvin T., Hallingbäck H. R., Haapanen M., Ruotsalainen S., Steffenrem A. Development of a universal height response model for transfer of Norway spruce (Picea abies L. Karst) in Fennoscandia // For. Ecol. Manag. 2023. V. 528. Article number 120628.

Looney C. E., Stewart J. A., Wood K. E. Mixed-provenance plantings and climatic transfer-distance affect the early growth of knobcone-monterey hybrid pine, a fire-resilient alternative for reforestation // New For. 2024. V. 55. Iss. 3. P. 543–565.

Lu P., Parker W. H., Cherry M., Colombo S., Parker W. C., Man R., Roubal N. Survival and growth patterns of white spruce (Picea glauca [Moench] Voss) rangewide provenances and their implications for climate change adaptation // Ecol. Evol. 2014. V. 4. Iss. 12. P. 2360–2374.

Lu P., Parker W. C., Colombo S. J., Man R. Restructuring tree provenance test data to conform to reciprocal transplant experiments for detecting local adaptation // J. Appl. Ecol. 2016. V. 53. Iss. 4. P. 1088–1097.

Lu P., Beaulieu J., Pedlar J., Parker W. C., McKenney D. W., Benomar L. Assessing assisted population migration (seed transfer) for eastern white pine at northern planting sites // For. Ecol. Manag. 2024. V. 572. Article number 122309.

Luo D., O’Neill G. A., Yang Y., Galeano E., Wang T., Thomas B. R. Population-specific climate sensitive top height curves and their applications to assisted migration // Europ. J. For. Res. 2024. V. 143. Iss. 5. P. 1349–1364.

Magalhães J. G., Amoroso M. M., Larson B. C. What evidence exists on the effects of competition on trees’ responses to climate change? A systematic map protocol // Environ. Evidence. 2021. V. 10. Iss. 1. Article number 34.

Mangold R. D., Libby W. J. A model for reforestation with optimal and suboptimal tree populations // Silv. Gen. 1978. V. 27. Iss. 2. P. 66–68.

Mátyás C. Adaptációs folyamatok erdei fák populációiban: a tudományok doktora fokozat elnyeréséhez benyujtott dissezerráció (Adaptation of forest tree populations. DSc. Thesis). Sopron-Szombathely, 1987. 193 p. (in Hungarian).

Mátyás C. Modeling climate change effects with provenance test data // Tree Physiol. 1994. V. 14. Iss. 7–9. P. 797–804.

Mátyás C. Climatic adaptation of trees: rediscovering provenance tests // Euphytica. 1996. V. 92. Iss. 1. P. 45–54.

Mátyás C. Adaptive pattern of phenotypic plasticity and inherent growth reveal the potential for assisted transfer in sessile oak (Quercus petraea L.) // For. Ecol. Manag. 2021. V. 482. Article number 118832.

Mátyás C., Balázs P., Nagy L. Climatic stress test of Scots pine provenances in northeastern Europe reveals high phenotypic plasticity and quasi-linear response to warming // Forests. 2023. V. 14. Iss. 10. Article number 1950.

Mátyás C., Yeatman C. W. Effect of geographical transfer on growth and survival of jack pine (Pinus banksiana Lamb.) populations // Silv. Gen. 1992. V. 41. Iss. 6. P. 370–376.

Montwe D., Isaac-Renton M., Hamann A., Spiecker H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration // Nat. Comm. 2018. V. 9. Iss. 1. Article number 1574.

Moran E. V., Hartig F., Bell D. M. Intraspecific trait variation across scales: Implications for understanding global change responses // Glob. Change Biol. 2016. V. 22. Iss. 1. P. 137–150.

Morin X., Thuiller W. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change // Ecology. 2009. V. 90. Iss. 5. P. 1301–1313.

Nabuurs G. J., Delacote P., Ellison D., Hanewinkel M., Lindner M., Nesbit M., Ollikainen M., Savaresi A. A new role for forests and the forest sector in the EU post-2020 climate targets // Europ. For. Inst. From Sci. to Policy. 2015. N. 2. 30 p.

Nakvasina E. N., Demina N., Prozherina N., Demidova N. Assessment of phenotypic plasticity of spruce species Picea abies (L.) Karst. and P. obovata (Ledeb.) on provenances tests in European North of Russia // Centr. Europ. For. J. 2019. V. 65. N. 2. P. 121–128.

Nakvasina E. N., Prozherina N. A. Scots pine (Pinus sylvestris L.) reaction to climate change in the provenance tests in the north of the Russian plain // Fol. For. Pol. 2021. V. 63. Iss. 2. P. 138–149.

Nigh G. Mitigating the effects of climate change on lodgepole pine site height in British Columbia, Canada, with a transfer function // Forestry. 2014. V. 87. Iss. 3. P. 377–388.

Nitschke C. R., Innes J. L. Integrating climate change into forest management in south-Central British Columbia: an assessment of landscape vulnerability and development of a climate-smart framework // For. Ecol. Manag. 2008. V. 256. Iss. 3. P. 313–327.

O’Neill G. A., Hamann A., Wang T. Accounting for population variation improves estimates of the impact of climate change on species’ growth and distribution // J. Appl. Ecol. 2008. V. 45. Iss. 4. P. 1040–1049.

O'Neill G. A., Nigh G. Linking population genetics and tree height growth models to predict impacts of climate change on forest production // Glob. Change Biol. 2011. V. 17. P. 3208–3217.

O’Neill G. A., Stoehr M., Jaquish B. Quantifying safe seed transfer distance and impacts of tree breeding on adaptation. For. Ecol. Manag. 2014. V. 328. P. 122–130.

O’Neill G., Wang T., Ukrainetz N., Charleson L., McAuley L., Yanchuk A., Zedel S. A proposed climate-based seed transfer system for British Columbia. Tech. Rep. 099. Prov. B. C., Victoria, B. C., 2017.

O’Neill G. A., Gómez-Pineda E. Local was best: sourcing tree seed for future climates // Can. J. For. Res. 2021. V. 51. N. 10. P. 1432–1439.

Park A., Rodgers J. L. Provenance trials in the service of forestry assisted migration: A review of North American field trials and experiments // For. Ecol. Manag. 2023. V. 537. Article number 120854.

Pedlar J., McKenney D. Assessing the anticipated growth response of northern conifer populations to a warming climate // Sci. Rep. 2017. V. 7. Article number 43881.

Pedlar J. H., McKeney D. W., Lu P. Critical seed transfer distances for selected tree species in eastern North America // J. Ecol. 2021a. V. 109. Iss. 6. P. 2271–2283.

Pedlar J. H., McKenney D. W., Lu P., Thomson A. Response of northern populations of black spruce and jack pine to southward seed transfers: implications for climate change // Atmosphere. 2021b. V. 12. Iss. 10. Article number 1363.

Persson B., Beuker E. Distinguishing between the effects of changes in temperature and light climate using provenance trials with Pinus sylvestris in Sweden // Can. J. For. Res. 1997. V. 27. N. 4. P. 572–579.

Petkova K., Georgieva M., Uzunov M. Investigation of Douglas-fir provenance test in North-Western Bulgaria at the age of 24 years // J. For. Sci. 2014. V. 60. Iss. 7. P. 288–296.

Petkova K. Growth response of Douglas-fir provenances to climate change // For. Ideas. 2018. V. 24. N. 2 (56). P. 105–120.

Petkova K., Molle E., Huber G., Konnert M., Gaviria J. Spring and autumn phenology of Bulgarian and German provenances of common beech (Fagus sylvatica L.) under similar climatic conditions // Silv. Gen. 2017. V. 66. Iss. 1. P. 24–32.

Poupon V., Chakraborty D., Stejskal J., Konrad H., Schueler S., Lstibůrek M. Accelerating adaptation of forest trees to climate change using individual tree response functions // Front. Plant Sci. 2021. V. 12. Article number 758221.

Pretzsch H., Biber P., Schütze G., Rötzer T. Forest stand growth dynamics in Central Europe have accelerated since 1870 // Nat. Comm. 2014. V. 5. Article number 4967.

Pretzsch H., Biber P., Uhl E., Dahlhausen J., Schütze G., Perkins D., Rötzer T., Caldentey J., Koike T., Con T. van, Chavanne A., Toit B. du, Foster K., Lefer B. Climate change accelerates growth of urban trees in metropolises worldwide // Sci. Rep. 2017. V. 7. Article number 15403.

Raymond C. A., Lindgren D. Genetic flexibility: a model for determining the range of suitable environments for a seed source // Silv. Gen. 1990. V. 39. P. 112–120.

Rehfeldt G. E. A model of genetic variation for Pinus ponderosa in the inland northwest (USA): applications in gene resource management // Can. J. For. Res. 1991. V. 21. N. 10. P. 1491–1500.

Rehfeldt G. E., Tchebakova N. M., Barnhardt L. K. Efficacy of climate transfer functions: introduction of Eurasian populations of Larix into Alberta // Can. J. For. Res. 1999a. V. 29. N. 11. P. 1660–1668.

Rehfeldt G. E., Ying C. C., Spittlehouse D. L., Hamilton D. A. Jr. Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation // Ecol. Monogr. 1999b. V. 69. P. 375–407.

Rehfeldt G. E., Tchebakova N. M., Parfenova E. I, Wykoff W. R., Kuzmina N. A., Milyutin L. I. Intraspecific response to climate in Pinus sylvestris // Glob. Change Biol. 2002. V. 8. Iss. 9. P. 912–929.

Rehfeldt G. E., Ferguson D. E., Crookston N. L. Quantifying the abundance of co-occurring conifers along inland northwest (USA) climate gradients // Ecology. 2008. V. 89. Iss. 8. P. 2127–2139.

Richardson B. A., Rehfeldt G. E., Sáenz-Romero C., Milano E. R. A climate analog approach to evaluate seed transfer and vegetation transitions // Front. For. Glob. Change. 2024. N. 7. Article number 1325264.

Roberds J. H., Namkoong G. Population selection to maximize value in an environmental gradient // Theor. Appl. Gen. 1989. V. 77. Iss. 1. P. 128–134.

Robson T., Garzón M., BeechCOSTe52 database consortium. Phenotypic trait variation measured on European genetic trials of Fagus sylvatica L. // Sci. Data. 2018. V. 5. Article number 180149.

Ryu D., Park M., Park J., Moon M., Yim J., Kim H. S. Quantification of tree growth change under climate change using National Forest Inventory of Korea // For. Ecol. Manag. 2024. V. 568. Article number 122112.

Sáenz-Romero C., Kremer A., Nagy L., Újvári-Jármay É., Ducousso A., Kóczán-Horváth A., Hansen J. K., Mátyás C. Common garden comparisons confirm inherited differences in sensitivity to climate change between forest tree species // PeerJ. 2019. V. 7. Article number 6213.

Seebacher F., Grigaltchik V. S. Embryonic developmental temperatures modulate thermal acclimation of performance curves in tadpoles of the frog Limnodynastes peronii // Plos One. 2014. V. 9. Iss. 9. Article number 106492.

Shutyaev A. M., Giertych M. Height growth variation in a comprehensive Euroasian provenance experiment of Pinus sylvestris // Silv. Gen. 1997. V. 46. Iss. 6. P. 332–349.

Shutyaev A. M., Giertych M. Genetic subdivisions of the range of Scots pine (Pinus sylvestris L.) based on a transcontinental provenance experiment // Silv. Gen. 2000. V. 49. Iss. 3. P. 137–151.

Skulason B., Hansen O. K., Nielsen U. B. Provenance variation in phenology and frost tolerance in subalpine fir (Abies lasiocarpa) planted in Denmark and Iceland // Forests. 2018. V. 9. Iss. 1. Article number 17.

Sow M. D., Allona I., Ambroise C., Conde D., Fichot R., Gribkova S., Jorge V., Le-Provost G., Pâques L., Plomion C., Salse J., Sanchez-Rodriguez L., Segura V., Tost J., Maury S. Chapter twelve - epigenetics in forest trees: State of the art and potential implications for breeding and management in a context of climate change // Adv. Bot. Res. 2018. V. 88. P. 387–453.

St Clair J. B., Mandel N. L., Vance-Boland K. W. Genecology of Douglas-fir in western Oregon and Washington // Ann. Bot. 2005. V. 96. Iss. 7. P. 1199–1214.

Tarakanov V. V., Chankina O. V., Kutsenogy K. P., Naumova N. B., Makarikova R. P., Milyutin L .I., Rogovtsev R. V., Efimov V. M. Influence of geographic populations on the elemental composition of pine phytomass and soil // J. Surface Investig.: X-Ray, Synchrotron and Neutron Techn. 2011. V. 5. N. 6. P. 1091–1097.

Thomas C., Cameron A., Green R., Bakkenes M., Beaumont L. J., Collingham Y. C., Barend Erasmus B. F. N., Siqueira M. F. de, Grainger A., Hannah L., Hughes L., Huntley B., Jaarsveld A. S. van, Midgley G. F., Miles L., Ortega-Huerta M. A., Peterson A. T., Phillips O. L., Williams S. E. Extinction risk from climate change // Nature. 2004. V. 427. P. 145–148.

Thomson A. M., Parker W. H. Boreal forest provenance tests used to predict optimal growth and response to climate change. 1. Jack Pine // Can. J. For. Res. 2008. V. 38. N. 1. P. 157–170.

Thomson A. M., Riddel C. L., Parker W. H. Boreal forest provenance tests used to predict optimal growth and response to climate change: 2. Black spruce // Can. J. For. Res. 2009. V. 39. N. 1. P. 143–153.

Torres-Sánchez E., Menéndez-Gutiérrez M., Villar L., Díaz R. The effects of provenance, climate, and chemical defense on the resistance of Pinus pinaster Aiton to Bursaphelenchus xylophilus (Steiner and Buhrer) // Ann. For. Sci. 2023. V. 80. Article number 33. 17 p.

Ukrainetz N. K., O’Neill G. A., Jaquish B. Comparison of fixed and focal point seed transfer systems for reforestation and assisted migration: a case study for interior spruce in British Columbia // Can. J. For. Res. 2011. V. 41. N. 7. P. 1452–1464.

Ujvári-Jármay É., Nagy L., Mátyás Cs. The IUFRO 1964/68 inventory provenance trial of Norway spruce in Nyírjes, Hungary – results and conclusions of five decades. Documentary study // Acta Silv. Lign. Hung. 2016. V. 12. Spec. Ed. 178 p.

Violle C., Enquist B. J., McGill B. J., Jiang L., Albert C. H., Hulshof C., Jung V., Messier J. The return of the variance: Intraspecific variability in community ecology // Trends Ecol. Evolut. 2012. V. 27. Iss. 4. P. 244–252.

Verkerk P. J., Costanza R., Hetemäki L., Kubiszewski I., Leskinen P., Nabuurs G. J., Potočnik J., Palahí M. Climate-smart forestry: the missing link // For. Policy Econ. 2020. V. 115. Article number 102164.

Wang H., Ning Y., Liu C., Xu P., Zhang W. Different radial growth responses to climate change of three dominant conifer species in temperate forest, northeastern China // Front. For. Glob. Change. 2022. V. 4. Article number 820800.

Wang T., Hamann A., Yanchuk A., O'Neill G. A., Aitken S. N. Use of response functions in selecting lodgepole pine populations for future climates // Glob. Change Biol. 2006. V. 12. Iss. 12. P. 2404–2416.

Wang T., O’Neill G. A., Aitken S. N. Integrating environmental and genetic effects to predict responses of tree populations to climate // Ecol. Appl. 2010. V. 20. Iss. 1. P. 153–163.

Yang J., Pedlar J. H., McKenney D. W., Weersink A. The development of universal response functions to facilitate climate-smart regeneration of black spruce and white pine in Ontario, Canada // For. Ecol. Manag. 2015. V. 339. P. 34–43.

Ying C. C., Yanchuk A. D. The development of British Columbia's tree seed transfer guidelines: Purpose, concept, methodology, and implementation // For. Ecol. Manag. 2006. V. 227. Iss. 1–2. P. 1–13.

Yousefpour R., Augustynczik A. L. D., Reyer C. P. O., Lasch-Born P., Suckow F., Hanewinkel M. Realizing mitigation efficiency of European commercial forests by climate smart forestry // Sci. Rep. 2018. V. 8. Iss. 1. Article number 345. 11 p.

Zeltiņš P., Katrevičs J., Gailis A., Maaten T., Desaine I., Jansons Ā. Adaptation capacity of Norway spruce provenances in Western Latvia // Forests. 2019. V. 10. Iss. 10. Article number 840. 15 p.

Zeng Z. A., Wolkovich E. M. Weak evidence of provenance effects in spring phenology across Europe and North America // New Phytol. 2024. V. 242. Iss. 5. P. 1957–1964.

Zhao Y., Wang T. Predicting the global fundamental climate niche of lodgepole pine for climate change adaptation // Front. For. Global Change. 2023. V. 6. Article number 1084797.


Вернуться к списку статей