Статьи 2025 г.
Уральский государственный лесотехнический университет
ул. Сибирский тракт, 37, Екатеринбург, 620100 Российская Федерация
E-mail: pervovaig@m.usfeu.ru, daniil.dvoryankin.02@mail.ru, klepalovaia@m.usfeu.ru
Реферат
УДК 541.183+674.8
Первова И. Г., Дворянкин Д. Ю., Клепалова И. А. Сорбционные свойства сосновых опилок, модифицированных органическими кислотами // Сибирский лесной журнал. 2025. № 4. С. …
DOI: 10.15372/SJFS20250409
EDN: …
© Первова И. Г., Дворянкин Д. Ю., Клепалова И. А., 2025
Отходы обработки древесины сосны обыкновенной (Pínus sylvéstris L.) представляют собой уникальное сырьё для получения древесных углеродных сорбентов, однако перспектива применения сосновых опилок в качестве адсорбционных материалов в процессах извлечения токсичных металлов из водных сред во многом определяется составом активных поверхностных функциональных групп. Целью исследования является оценка сорбционных свойств и степени изменения состава кислородсодержащих функциональных групп углеродных сорбентов, полученных модификацией сосновых опилок растворами различных карбоновых кислот, для расширения возможности квалифицированного применения крупнотоннажных отходов деревообработки в качестве альтернативных сорбционных материалов. Модификацию как нативных, так и термически обработанных при 300 ± 10 °С древесных опилок сосны обыкновенной проводили, используя 1 % растворы карбоновых кислот разной основности (уксусной, янтарной, винной, лимонной), при температуре 80 °С в течение 5 часов. Для количественного определения функциональных групп в составе модифицированных углеродных сорбентов применили титриметрический метод Боэма. Импрегнирование карбоновых кислот разной основности увеличило общую кислотность полученных углеродных сорбентов за счёт роста в их составе количества гидроксильных групп, ранее не присутствовавших в нативных сосновых опилках. Сорбционное поведение химически и термохимически модифицированных углеродных сорбентов исследовано по отношению к ионам Cu (II) и Zn (II), и установлен положительный эффект модификации только в случае извлечения ионов меди из водных сред. Рассчитанные термодинамические параметры указывают на самопроизвольный процесс физической сорбции без образования устойчивых химических связей, причём сорбция ионов Cu (II) на исходных опилках протекает в соответствии с моделью Дубинина-Радушкевича, а извлечение модифицированными образцами происходит согласно модели Ленгмюра. Показана эффективность применения химически и термохимически модифицированных 1 % лимонной кислотой сосновых опилок для извлечения ионов меди (II) из водных сред (сорбционная ёмкость 16.96 и 12.20 мг/г соответственно).
Текст статьи
СПИСОК ЛИТЕРАТУРЫ (REFERENCES)
Адсорбция из растворов на поверхности твердых тел: пер. с англ. под ред. Г. Парфита, Л. Рочестера. М.: Мир, 1986. 488 с. [Adsorbtsiya iz rastvorov na poverkhnosti tverdykh tel: per. s angl. pod red. G. Parfita, L. Rochestera (Adsorption from solutions on the surface of solids: translated from English. G. Parfit, L. Rochester (Eds.). Moscow: Mir, 1986. 488 p. (in Russian)].
Бенько Е. М., Лунин В. В. Адсорбция метиленового голубого на лигноцеллюлозных растительных материалах // Журн. физ. хим. 2018. Т. 92. № 9. С. 1465–1469 [Ben’ko E. M., Lunin V. V. Adsorbtsiya metilenovogo golubogo na lignotsellyuloznykh rastitel’nykh materialakh (Adsorption of methylene blue on lignocellulosic plant materials) // Zhurn. fiz. khim. (J. Phys. Chem.). 2018. V. 92. N. 9. P. 1465–1469 (in Russian with English abstract)].
Болговский В. С. Новые способы кислотного гидролиза целлюлозы и растительного сырья // Вестн. Нац. акад. наук Белорус. Сер. хим. наук. 2021. Т. 57. № 1. С. 119–128 [Bolgovskiy V. S. Novye sposoby kislotnogo gidroliza tsellyulozy i rastitel’nogo syr’ya (New methods of acid hydrolysis of cellulose and plant raw materials) // Vestn. Nats. akad. nauk Belorus. Ser. khim. nauk (Proc. Nat. Acad. Sci. Belarus. Ser. Chem. Sci.). 2021. V. 57. N. 1. P. 119–128 (in Russian with English abstract)].
Веприкова Е. В., Кузнецова С. А., Чесноков Н. В. Очистка воды от меди, цинка и свинца сорбентами из луба коры березы // Журн. СФУ. Хим. 2015. № 2. С. 202–210 [Veprikova E. V., Kuznetsova S. A., Chesnokov N. V. Ochistka vody ot medi, tsinka i svintsa sorbentami iz luba kory berezy (Purification of water from copper, zinc and lead by sorbents from inner birch bark) // Zhurn. SFU. Khim. (J. Sib. Fed. Univ. Chem.). 2015. N. 2. Р. 202–210 (in Russian with English abstract)].
Гайдукова А. М., Колесников В. А., Похвалитова А. А. Очистка сточных вод гальванического производства от ионов металлов с применением сорбции в статическом режиме и электрофлотации // Теор. и прикл. экол. 2021. № 4. С. 160–166 [Gaydukova A. M., Kolesnikov V. A., Pokhvalitova A. A. Ochistka stochnykh vod gal’vanicheskogo proizvodstva ot ionov metallov s primeneniem sorbtsii v staticheskom rezhime i elektroflotatsii (Treatment of electroplating wastewater from metal ions with the use of sorption in static mode and electroflotation) // Teor. i prikl. ekol. (Theor. Appl. Ecol.). 2021. N. 4. Р. 160–166 (in Russian with English abstract)].
Галимова Р. З., Латыпова Л. Ф., Шайхиев И. Г., Свергузова С. В., Воронина Ю. С. Кинетика сорбции ионов железа (III) из водных растворов нативной и модифицированной листвой тополя // Экон. строит-ва и природопольз. 2022. Т. 1–2 (82–83). С. 115–121 [Galimova R. Z., Latypova L. F., Shaykhiev I. G., Sverguzova S. V., Voronina Yu. S. Kinetika sorbtsii ionov zheleza (III) iz vodnykh rastvorov nativnoy i modifitsirovannoy listvoy topolya (Kinetics of iron (III) ions sorption from aqueous solutions by native and modified poplar leaf) // Ekon. stroit-va i prirodopol’z. (Econ. Construct. Environ. Manag.). 2022. V. 1–2 (82–83). Р. 115–121 (in Russian with English abstract)].
Глушанкова И. С., Комбарова М. М., Атанова А. С. Получение углеродных бактерицидных сорбентов из отходов древесностружечных плит // Вопр. совр. науки и практ. 2021. № 2 (80). С. 7–15 [Glushankova I. S., Kombarova M. M., Atanova A. S. Poluchenie uglerodnykh bakteritsidnykh sorbentov iz otkhodov drevesnostruzhechnykh plit (Preparing carbon bactericide sorbents from waste wood boards) // Vopr. sovr. nauki i prakt. (Iss. Modern Sci. and Pract.). 2021. N. 2 (80). Р. 7–15 (in Russian with English abstract and references)].
ГОСТ 13144-79. Графит. Методы определения удельной поверхности. М.: Изд-во стандартов, 1999. 7 с. [GOST 13144-79. Grafit. Metody opredeleniya udel’noy poverkhnosti (GOST (St. Industry Standard) 13144-79. Graphite. Methods for determining specific surface area). Moscow: Izd-vo standartov, 1999. 7 p. (in Russian)].
Дворянкин Д. Ю., Первова И. Г., Маслакова Т. И., Клепалова И. А. Исследование физико-химических характеристик модифицированных углеродных сорбентов на основе древесных отходов // Сорбц. и хроматогр. процес. 2023. Т. 23. Вып. 5. С. 868–878 [Dvoryankin D. Yu., Pervova I. G., Maslakova T. I., Klepalova I. A. Issledovanie fiziko-khimicheskikh kharakteristik modifitsirovannykh uglerodnykh sorbentov na osnove drevesnykh otkhodov (Study of the physicochemical characteristics of modified carbon sorbents based on wood waste) // Sorbts. i khromatogr. prots. (Sorpt. Chromatogr. Proces.). 2023. V. 23. Iss. 5. P. 868–878 (in Russian with English abstract and references)].
Дымникова Н. С., Ерохина Е. В. Окислительная деструкция лигнинсодержащих примесей льна // Рос. хим. журн. 2020. Вып. 2. С. 30–36 [Dymnikova N. S., Erokhina E. V. Okislitel’naya destruktsiya ligninsoderzhashchikh primesey l’na (Oxidative degradation of lignin-containing flax impurities) // Ros. khim. zhurn. (Rus. Chem. J.). 2020. Iss. 2. P. 30–36 (in Russian with English abstract)].
Кулайшин С. А., Веденяпина М. Д., Курмышева А. Ю. Влияние характеристик поверхности активированных углей на процесс адсорбции некоторых гербицидов // Хим. тверд. топлива. 2022. Вып. 3. С. 30–47 [Kulayshin S. A., Vedenyapina M. D., Kurmysheva A. Yu. Vliyanie kharakteristik poverkhnosti aktivirovannykh ugley na protsess adsorbtsii nekotorykh gerbitsidov (Influence of the surface characteristics of activated carbon on the adsorption of herbicides) // Khim. tverd. topliva (Solid Fuel Chem.). 2022. Iss. 3. P. 30–47 (in Russian with English abstract)].
Лурье Ю. Ю. Справочник по аналитической химии. М: Химия, 1971. 456 с. [Lur'e Yu. Yu. Spravochnik po analiticheskoy khimii (Analytical chemistry guide). Moscow: Khimiya (Chemistry), 1971. 456 p. (in Russian)].
Мухин В. М., Королев Н. В. Активные угли как важный фактор устойчивого развития экономики и качества жизни населения // Теор. и прикл. экол. 2021. № 4. С. 210–217 [Mukhin V. M., Korolev N. V. Aktivnye ugli kak vazhny faktor ustoychivogo razvitiya ekonomiki i kachestva zhizni naseleniya (Active carbons as an important factor in the sustainable development of the economy and the quality of life of the population) // Teor. i prikl. ekol. (Theor. and Appl. Ecol.). 2021. N. 4. P. 210–217 (in Russian with English abstract)].
Нгуен Т. К. Т., Гафаров Р., Шайхиев И. Г. Адсорбция ионов Zn (II) на опилках азадирахты индийской (Azadirachta indica) // Инновационные подходы в решении современных проблем рационального использования природных ресурсов и охраны окружающей среды: Сб. докл. Междунар. науч.-техн. конф., Алушта, 03-07 июня 2019 г. Ч. I. Алушта: Белгород. гос. технол. ун-т им. В. Г. Шухова, 2019. С. 254–261 [Nguen T. K. T., Gafarov R., Shaykhiev I. G. Adsorbtsiya ionov Zn (II) na opilkakh azadirakhty indiyskoy (Azadirachta indica) (Zn (II) ions adsorption on Azadirachta indica sawdust) // Innovatsionnye podkhody v reshenii sovremennykh problem ratsional’nogo ispol'zovaniya prirodnykh resursov i okhrany okruzhayushchey sredy: sb. dokl. Mezhdunar. nauch.-tekh. konf., Alushta, 03-07 iyunya 2019 g. Ch. I. (Innovative approaches to solving modern problems of rational use of natural resources and environmental protection: Proc. Int. Sci.-Tech. Conf., Alushta, 3-7 June, 2019. Part I). Alushta: Belgorod. gos. tekhnol. un-t im. V. G. Shukhova (Belgorod St. Technol. Univ. named after V. G. Shukhov), 2019. P. 254–261 (in Russian)].
Самонин В. В., Спиридонова Е. А., Зотов А. С., Подвязников М. Л., Гарабаджиу А. В. Химическое строение, пористая структура и сорбционные свойства адсорбентов из органических техногенных субстратов // Журн. общ. хим. 2021. Т. 91. № 8. С. 1284–1308 [Samonin V. V., Spiridonova E. A., Zotov A. S., Podvyaznikov M. L., Garabadzhiu A. V. Khimicheskoe stroenie, poristaya struktura i sorbtsionnye svoystva adsorbentov iz organicheskikh tekhnogennykh substratov (Chemical structure, porous morphology, and sorption properties of adsorbents produced from organic technogenic substrates (A review)) // Zhurn. obshch. khim. (J. Gen. Chem.). 2021. V. 91. Iss. 8. P. 1284–1308 (in Russian with English abstract)].
Самонин В. В., Спиридонова Е. А., Подвязников М. Л., Хрылова Е. Д., Хохлачев С. П., Клищевская Л. Получение активированных углей из отходов деревообрабатывающей промышленности // ИВУЗ. Сер. Хим. и хим. технол. 2022. Т. 65. № 12. С. 67–75 [Samonin V. V., Spiridonova E. A., Podvyaznikov M. L., Khrylova E. D., Khokhlachev S. P., Klichshevskaya L. Poluchenie aktivirovannykh ugley iz otkhodov derevoobrabatyvayushchey promyshlennosti (Production of activated carbon from the woodworking industry waste) // IVUZ. Ser. Khim. i khim. tekhnol. (ChemChemTech). 2022. V. 65. Iss. 12. P. 67–75 (in Russian with English abstract and references)].
Святченко А. В., Сапронова Ж. А., Свергузова С. В., Порожнюк Е. В., Лупандина Н. С. Определение оптимальных параметров модификации целлюлозосодержащего сорбционного материала (листового каштанового опада) // Вестн. Камчат. гос. тех. ун-та. 2020. № 52. С. 40–49 [Svyatchenko A. V., Sapronova Zh. A., Sverguzova S. V., Porozhnyuk E. V., Lupandina N. S. Opredelenie optimal’nykh parametrov modifikatsii tsellyulozosoderzhashchego sorbtsionnogo materiala (listovogo kashtanovogo opada) (Determination of optimal parameters for the modification of cellulose-containing sorption material (chestnut leaf litter) // Vestn. Kamchat. gos. tekh. un-ta (Bull. Kamchatka St. Tech. Univ.). 2020. N. 52. P. 40–49 (in Russian with English abstract and references)].
Юрьев Ю. Л. Получение и использование березового активного угля для доочистки питьевой воды // ИВУЗ. Лесн. журн. 2020. №. 3. С. 169–175 [Yur’ev Yu. L. Poluchenie i ispol’zovanie berezovogo aktivnogo uglya dlya doochistki pit’evoy vody (Production and use of birch activated carbon for drinking water post-treatment) // IVUZ. Lesn. zhurn. (For. J.). 2020. N. 3. P. 169–175 (in Russian with English abstract and references)].
Afzaal M., Hameed S., Abbasi N.A., Liaqat I., Rasheed R., Ali Khan A.-A., Manan H. Removal of Cr (III) from wastewater by using raw and chemically modified sawdust and corn husk // Water Pract. Technol. 2022. V. 17. Iss. 9. P. 1937–1958.
Azmi S. N. H., Al Lawati W. M., Al Hoqani U. H. A., Al Aufi E., Al Hatmi K., Al Zadjali J. S., Rahman N., Nasir M., Rahman H., Khan S. A. Development of a citric-acid-modified cellulose adsorbent derived from Moringa peregrina leaf for adsorptive removal of citalopram HBr in aqueous solutions // Pharmaceuticals. 2022. V. 15. Iss. 6. Article 760. 19 p.
Ben’ko E. M., Lunin V. V. Adsorption of methylene blue on lignocellulosic plant materials // Rus. J. Phys. Chem. 2018. V. 92. Iss. 9. P. 1794–1798 (Original Rus. Text © E. M. Ben’ko, V. V. Lunin, 2018, publ. in Zhurnal Fizicheskoy Khimii. 2018. V. 92. N. 9. P. 1465–1469).
Boehm H. P. Surface oxides on carbon and their analysis: a critical assessment // Carbon. 2002. V. 40. Iss. 2. P. 145–149.
Condon J. B. Surface area and porosity determinations by physisorption: measurements and theory. Amsterdam: Elsevier, 2006. 296 р.
Daniel A. B., Zahir E., Hussain I., Naz S., Asghar M. A. Citric acid modified cellulose: a cost effective adsorbent for the immobilization of Cr (III) ions from the aqueous phase // Energy Sources. Part A: Recovery, Utilization, and Environmental Effects. 2020. Article 1773963.
Dymnikova N. S., Erokhina E. V. Oxidative degradation of lignin-containing flax impurities // Rus. J. Gen. Chem. 2021. V. 91. P. 2627–2632 (Original Rus. Text © N. S. Dymnikova, E. V. Erokhina, 2021, publ. in Rossiyskiy khimicheskiy zhurnal. 2020. V. LXIV. N. 2. P. 30–36).
Garg R., Garg R., Sillanpää M., Alimuddin, Khan M. A., Mubarak N. M., Tan Y. H. Rapid adsorptive removal of chromium from wastewater using walnut‑derived biosorbents // Sci. Rep. 2023. V. 13. Article 6859.
Ghodbane I., Nouri L., Hamadaoui O., China M. Kinetic and equilibrium study for the sorption of cadmium (II) ions from aqueous phase by eucalyptus bark // J. Hazard. Materials. 2008. V. 152. Iss. 1. P. 148–158.
Hashem A., Badawy S. M., Farag S., Mohamed L. A., Fletcher A. J., Taha G. M. Non-linear adsorption characteristics of modified pine wood sawdust optimised for adsorption of Cd (II) from aqueous systems // J. Environ. Chem. Engineer. 2020. V. 8. Iss. 4. Article 103966.
Hussain M. S., Rehman R., Imran M., Dar A., Akram M., Al-Abbad E. A. Eco-friendly detoxification of congo red dye from water by citric acid activated bioadsorbents consisting of watermelon and water chestnuts peels collected from indigenous resources // Adsorp. Sci. Technol. 2022. V. 8. Article 9056288. 20 p.
Irfan M. I., Sadiq M., Zohra L., Siddique A. B., Yousaf M., Rubab M., Urooj K., Aziz A., Ali H., Fatima M., Amin H. M. A., Alhazmi H. A., Abbas A. Chemical modification of Pinus wallichiana sawdust: application in membrane system for efficient purification of groundwater containing Cd (II) and Ni (II) // J. Water Proces. Engineer. 2024. V. 68. Article 106337.
Kalak T., Kaczmarek M., Nowicki P., Pietrzak R., Tachibana Y., Cierpiszewski R. Preparation of nitrogen‑enriched pine sawdust‑based activated carbons and their application for copper removal from the aquatic environment // Wood Sci. Technol. 2022. V. 56. Iss. 1. P. 1721–1742.
Kong Q., Preis S., Li L., Luoi P., Wei C., Li Z., Hu Y., Wei C.-H. Relations between metal ion characteristics and adsorption performance of graphene oxide: A comprehensive experimental and theoretical study // Separ. Purificat. Technol. 2020. V. 232. Article 115956.
Kulaishin S. A., Vedenyapina M. D., Kurmysheva A. Y. Influence of the surface characteristics of activated carbon on the adsorption of herbicides (A review) // Solid Fuel Chem. 2022. V. 56. Iss. 3. P. 181–198 (Original Rus. Text © S. A. Kulaishin, M. D. Vedenyapina, A. Y. Kurmysheva, 2022, publ. in Khimiya tverdogo topliva. 2022. N. 3. P. 30–47).
Liu M., Zhao Z., Yu W. Citric acid modified wood membranes for efficient adsorption of tetracycline: effect of alkali pretreatment concentration and adsorption mechanism // Chem. Engineer. J. 2020. V. 393. Article 124748.
Mannai I., Sayen S., Arfaoui A., Touil A., Guillon E. Copper removal from aqueous solution using raw pine sawdust, olive pomace and their derived traditional biochars // Int. J. Environ. Sci. Technol. 2022. V. 19. P. 6981–6992.
Meez, E., Rahdar A., Kyzas G. Z. Sawdust for the removal of heavy metals from water: a review // Molecules. 2021. V. 26. Iss. 14. P. Article 4318. 21 p.
Melo D. Q., Sousa Neto V. O., Barros F. C. F., Raulino G. S. C., Vidal C. B., Nascimento R. F. Chemical modification of lignocellulosic materials and their application for removal of cations and anions from aqueous solutions // J. Appl. Polymer Sci. 2016. V. 133. Iss. 15. Article 43286.
Mulana F., Mariana, Muslim A., Mohibah M., Ku Halim K. H. Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent // IOP Conf. Ser.: Material. Sci. Engineer. 2018. V. 334. Article 012027.
Nayak A., Bhushan B., Gupta V., Ghai K. Designing a better bio-adsorbent from sawdust for removal of metal ions from wastewater: a review on various modifications // J. Critical Rev. 2020. V. 7. Iss. 13. P. 4090–4101.
Nikiforova T. E. Effect of chemical modification of a cotton cellulose by anthranilic acid on the sorption of Cu (II) and Fe (II) ions // From Chem. Towards Technol. Step-By-Step. 2023. V. 4. N. 3. P. 81–89.
Orozco C. I., Freire M. S., Gómez-Díaz D., González-Álvarez J. Removal of copper from aqueous solutions by biosorption onto pine sawdust // Sustain. Chem. Pharm. 2023. V. 32. Article 101016.
Pereira J. F., Marim B. M., Mali S. Chemical modification of cellulose using green route by reactive extrusion with citric and succinic acids // Polysaccharides. 2022. V. 3. Iss. 1. P. 292–305.
Saleh M. O., Hashem M. A., Akl M. A. Removal of Hg (II) metal ions from environmental water samples using chemically modified natural sawdust // Egypt. J. Chem. 2021. V. 64. N. 2. P. 1027–1034.
Samonin V. V., Spiridonova E. A., Zotov A. S., Podvyaznikov M. L., Garabadzhiu A. V. Chemical structure, porous morphology, and sorption properties of adsorbents produced from organic technogenic substrates (A review) // Rus. J. Gen. Chem. 2021. V. 91. Iss. 8. P. 1546–1565 (Original Rus. Text © V. V. Samonin, E. A. Spiridonova, A. S. Zotov, M. L. Podvyaznikov, A. V. Garabadzhiu, 2021, publ. in Zhurnal Obshchei Khimii. 2021. V. 91. N. 8. P. 1284–1308).
Ulfa S. M., Chamidah N., Kurniawan A. Adsorption of Cu (II) in aqueous solution by modified sawdust cellulose // IOP Conf. Ser.: Earth and Environ. Sci. 2019. V. 239. Article 012008.
Zhang R., Zhou Y., Gu X., Lu J. Competitive adsorption of methylene blue and Cu2+ onto citric acid modified pine sawdust // Clean – Soil, Air, Water. 2015. V. 43. Iss. 1. P. 96–103.
Zhao Y. Q., Razali M., Babatunde A. O., Yang Y., Bruen M. Reuse of aluminum-based water treatment sludge to immobilize a wide range of phosphorus contamination: equilibrium study with different isotherms models // Separ. Sci. Technol. 2007. V. 42. Iss. 12. P. 2705–2721.