RU EN

Меню страницы:

Статьи 2024 г.

Ключевые слова:
углерод, латеральный сток, водотоки разных порядков, пожары, Среднесибирское плоскогорье
Страницы:
67–82

Реферат

УДК 574.4(57.045)

Прокушкин А. С.1, 2, Гейс Т. Н.1, 2, Колосов Р. А.1, Корец М. А.1, Панов А. В.1, Полосухина Д. А.1, 2, Прокушкина М. П.2, Титов С. В.1, Токарева И. В.1, Сиденко Н. В.1, Шамонина Ю. В.1, Прокушкин С. Г.1 Латеральный сток углерода в криолитозоне центральной Сибири // Сибирский лесной журнал. 2024. № 3. С. 67–82.

DOI: 10.15372/SJFS20240307

EDN: …

© Прокушкин А. С., Гейс Т. Н., Колосов Р. А., Корец М. А., Панов А. В., Полосухина Д. А., Прокушкина М. П., Титов С. В., Токарева И. В., Сиденко Н. В., Шамонина Ю. В., Прокушкин С. Г., 2024

Количественные оценки баланса углерода ландшафтов суши и, особенно криолитозоны, где наблюдаются наиболее значимые тренды потепления, требует учета экспорта терригенного углерода за их пределы с латеральным стоком. В работе представлены результаты многолетнего круглогодичного мониторинга внутрисезонных и межгодовых флуктуаций концентраций растворенного органического (РОУ) и неорганического (РНУ) углерода в гидрографической сети Среднесибирского плоскогорья, осуществляемого на базе Эвенкийского стационара ИЛ СО РАН (п. Тура). Исследования проводятся на более чем 100 водотоках разного порядка в среднем течении р. Нижняя Тунгуска (62–66° с. ш., 96–102° в. д.) на основе регулярного измерения концентраций всех форм углерода, а также квазинепрерывного мониторинга физико-химических параметров водотоков с помощью автоматических логгеров-регистраторов. Показано, что основными лимитирующими факторами латерального стока углерода в пределах Среднесибирского плоскогорья в настоящее время являются: 1. запасы потенциально мобилизуемого органического углерода в наземных ландшафтах и 2. количество осадков в условиях резко континентального климата. Рост стока органического углерода прогнозируется, как в результате оттаивания богатых Сорг мерзлых толщ, так и повышения продуктивности растительного покрова, а неорганического углерода – вследствие повышения скоростей выветривания горных пород и секвестрации атмосферного СО2. Отрицательные прогнозы поведения РОУ связываются с увеличением глубины инфильтрации растворов с ростом сезонно-талого слоя почвы, что определяет сорбцию РОУ в почвенной толще и его микробиологическую деструкцию. Возрастание площадей и интенсивности пожаров в результате потепления климата определяет существенную трансформацию латерального стока углерода. При этом, наблюдаемое сокращение стока рек в результате усиления пирогенного фактора будет определять общее снижение транспорта терригенного углерода из наземных ландшафтов.   

Текст статьи


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Гончарова О. Ю., Тимофеева М. В., Матышак Г. В. Диоксид углерода в почвенных, грунтовых и поверхностных водах арктических и бореальных регионов: роль, источники, методы определения (обзор) // Почвоведение. 2023. № 3. С. 321–338 [Goncharova O. Yu., Timofeeva M. V., Matyshak G. V. Dioksid ugleroda v pochvennykh, gruntovykh i poverkhnostnykh vodakh arkticheskikh i boreal’nykh regionov: rol’, istochniki, metody opredeleniya (obzor) (Carbon dioxide in soil, ground and surface waters of the northern regions: role, sources, test methods (a review)) // Pochvovedenie (Soil Sci.). 2023. N. 3. P. 321–338 (in Russian with English abstract)].

Ершов Ю. И. Закономерности почвообразования в пределах Среднесибирского плоскогорья // Почвоведение. 1995. № 7. С. 805–810 [Ershov Yu. I. Zakonomernosti pochvoobrazovaniya v predelakh Srednesibirskogo ploskogor’ya (Patterns of soil formation within the Central Siberian Plateau) // Pochvovedenie (Soil Sci.). 1995. N. 7. P. 805–810 (in Russian with English abstract)].

Зырянова О. А., Абаимов А. П., Чихачева Т. Л. Влияние пожаров на лесообразовательный процесс в лиственничных лесах севера Сибири // Лесоведение. 2008. № 1. С. 3–10 [Zyryanova O. A., Abaimov A. P., Chikhacheva T. L. Vliyanie pozharov na lesoobrazovatel’ny protsess v listvennichnykh lesakh severa Sibiri (Influence of fires on forest regeneration process in larch forests of the north of Siberia) // Lesovedenie (For. Sci.). 2008. N. 1. P. 3–10 (in Russian with English abstract)].

Куричева О. А., Авилов В. К., Варлагин А. В., Гитарский М. Л., Дмитриченко А. А., Дюкарев Е. А., Загирова С. В., Замолодчиков Д. Г., Зырянов В. И., Карелин Д. В., Карсанаев С. В., Курганова И. Н., Лапшина Е. Д., Максимов А. П., Максимов Т. Х., Мамкин В. В., Марунич А. С., Мигловец М. Н., Михайлов О. А., Панов А. В., Прокушкин А. С., Сиденко Н. В., Шилкин А. В., Курбатова Ю. А. Мониторинг экосистемных потоков парниковых газов на территории России: сеть RUFLUX // Изв. РАН. Сер. геогр. 2023. Т. 87. № 4. С. 512–535 [Kuricheva O. A., Avilov V. K., Varlagin A. V., Gitarskiy M. L., Dmitrichenko A. A., Dyukarev E. A., Zagirova S. V., Zamolodchikov D. G., Zyryanov V. I., Karelin D. V., Karsanaev S. V., Kurganova I. N., Lapshina E. D., Maksimov A. P., Maksimov T. H., Mamkin V. V., Marunich A. S., Miglovets M. N., Mikhaylov O. A., Panov A. V., Prokushkin A. S., Sidenko N. V., Shilkin A. V., Kurbatova Yu. A. Monitoring ekosistemnykh potokov parnikovykh gazov na territorii Rossii: set’ RUFLUX (RuFlux: The network of the eddy covariance sites in Russia) // Izv. RAN. Ser. geogr. (Proc. Rus. Acad. Sci. Ser. Geogr.). 2023. V. 87. N. 4. P. 512–535 (in Russian with English abstract)].

Кушев С. Л., Леонов Б. Н. Рельеф и геологическое строение В кн.: Средняя Сибирь. М.: Наука, 1964. С. 23–82 [Kushev S. L., Leonov B. N. Rel'ef i geologicheskoe stroenie In: Srednyaya Sibir’. Moscow: Nauka (Science), 1964. P. 23–82 (in Russian)].

Огуреева Г. Н., Микляева И. М., Сафронова И. Н., Юрковская Т. К. Зоны и типы поясности растительности России и сопредельных территорий. Карта для высших учебных заведений М 1 : 8 000 000. М.: ЭКОР, 1999. Т. 2. На 2-х л. [Ogureeva G. N., Miklyaeva I. M., Safronova I. N., Yurkovskaya T. K. Zony i tipy poyasnosti rastitel’nosti Rossii i sopredel’nykh territoriy. Karta dlya vysshih uchebnykh zavedeniy M 1 : 8 000 000 (Zones and types of vegetation zonation in Russia and adjacent territories. The map for higher education institutions. Scale 1 : 8 000 000). Moscow: EKOR, 1999. V. 2. On 2 sheets (in Russian)].

Ольчев А. В., Зырянов В. И., Сатосина Е. М., Фокеев Е. В., Мухартова Ю. В., Новенко Е. Ю., Прокушкин А. С. Сезонная изменчивость потоков диоксида углерода, явного и скрытого тепла в северотаежном лиственничном лесу Средней Сибири по данным пульсационных измерений // Метеорол. и гидрол. 2022. № 10. С. 111–120 [Ol’chev A. V., Zyryanov V. I., Satosina E. M., Fokeev E. V., Mukhartova Yu. V., Novenko E. Yu., Prokushkin A. S. Sezonnaya izmenchivost’ potokov dioksida ugleroda, yavnogo i skrytogo tepla v severotaezhnom listvennichnom lesu Sredney Sibiri po dannym pul’satsionnykh izmereniy (Seasonal variability of carbon dioxide, sensible and latent heat fluxes in a northern taiga larch forest of Central Siberia for eddy covariance flux measurements) // Meteorol. i gidrol. (Meteorol. & Hydrol.). 2022. N. 10. P. 111–120 (in Russian with English abstract)].

Прокушкин C. Г., Богданов В. В., Прокушкин А. С., Токарева И. В. Послепожарное восстановление органического вещества в напочвенном покрове лиственничников криолитозоны центральной Эвенкии // Изв. РАН. Сер. биол. 2011. № 2. С. 227–234 [Prokushkin S. G., Bogdanov V. V., Prokushkin A. S., Tokareva I. V. Poslepozharnoe vosstanovlenie organicheskogo veshchestva v napochvennom pokrove listvennichnikov kriolitozony tsentral’noy Evenkii (Post-fire restoration of organic substance in the ground cover of the larch forests in permafrost zone of Central Evenkia) // Izv. RAN. Ser. Bio. (Proc. Rus. Acad. Sci. Ser. Biol.). 2011. N. 2. P. 227–234 (in Russian with English abstract)].

Прокушкин C. Г., Зырянова О. А., Прокушкин А. С. Распределение запасов фитомассы и биогенных элементов в древостоях лиственницы Гмелина в Центральной Эвенкии (на примере малого водосборного бассейна) // Изв. РАН. Сер. биол. 2021. № 1. С. 93–102 [Prokushkin S. G., Zyryanova O. A., Prokushkin A. S. Raspredelenie zapasov fitomassy i biogennykh elementov v drevostoyakh listvennitsy Gmelina v Tsentral’noy Evenkii (na primere malogo vodosbornogo basseyna) (Phytomass reserves and distribution of biogenic elements in Gmelin larch stands in Central Evenkia (Using the example of a small drainage basin)) // Izv. RAN. Ser. Bio. (Proc. Rus. Acad. Sci. Ser. Biol.). 2021. N. 1. P. 93–102 (in Russian with English abstract)].

Старцев В. В., Дымов А. А., Прокушкин А. С. Почвы постпирогенных лиственничников Средней Сибири: морфология, физико-химические свойства и особенности почвенного органического вещества // Почвоведение. 2017. № 8. С. 912–925 [Startsev V. V., Dymov A. A., Prokushkin A. S. Pochvy postpirogennykh listvennichnikov Sredney Sibiri: morfologiya, fiziko-khimicheskie svoystva i osobennosti pochvennogo organicheskogo veshchestva (Soils of postpyrogenic larch stands in Central Siberia: morphology, physicochemical properties, and specificity of soil organic matter) // Pochvovedenie (Soil Sci.). 2017. N. 8. P. 912–925 (in Russian with English abstract)].

Abaimov A. P. Geographical distribution and genetics of Siberian larch species In: Permafrost ecosystems: Siberian larch forests / A. Osawa, T. Kajimoto, O. A. Zyryanova, Y. Matsuura, R. Wein (Eds.). Springer Dordrecht, 2010. P. 41–58.

Ahmed R., Prowse T., Dibike Y., Bonsal B., O’Neil H. Recent trends in freshwater influx to the Arctic Ocean from four major Arctic-draining rivers // Water. 2020. V. 12. N. 4. Article 1189. 13 p.

Amon R. M. W., Rinehart A. J., Duan S., Louchouarn P., Prokushkin A., Guggenberger G., Bauch D., Stedmon C., Raymond P. A., Holmes R. M., McClelland J. W., Peterson B. J., Walker S. A., Zhulidov A. V. Dissolved organic matter sources in large Arctic rivers // Geochim. Cosmochim. Acta. 2012. V. 94. P. 217–237.

Bagard M. L., Chabaux F., Pokrovsky O. S., Viers J., Prokushkin A. S., Stille P., Rihs S., Schmit A. D., Dupre B. Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas // Geochim. Cosmochim. Acta. 2011. V. 75. Iss. 12. P. 3335–3357.

Drake T. W., Raymond P. A., Spencer R. G. M. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty // Limnol. Oceanogr. Lett. 2018. V. 3. Iss. 3. P. 132–142.

Finlay J., Neff J., Zimov S., Davydova A., Davydov S. Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: implications for characterization and flux of river DOC // Geophys. Res. Lett. 2006. V. 33. Iss. 10. Article 25754.

Goncharova O. Yu., Timofeeva M. V., Matyshak G. V. Carbon dioxide in soil, ground and surface waters of the northern regions: Role, sources, test methods (a review) // Euras. Soil Sci. 2023. V. 56. N. 3. P. 278–293 (Original Rus. text © O. Yu. Goncharova, M. V. Timofeeva, G. V. Matyshak, 2023, publ. in Pochvovedenie. 2023. N. 3. P. 321–338).

Guggenberger G., Rodionov A., Shibistova O., Grabe M., Kasansky O. A., Fuchs H., Mikheeva N., Zrazhevskaya G., Flessa H. Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia // Global Change Biol. 2008. V. 14. Iss. 6. P. 1367–1381.

Holmes R. M., McClelland J. W., Peterson B. J., Tank S. E., Bulygina E., Eglinton T. I., Gordeev V. V., Gurtovaya T. Y., Raymond P. A., Repeta D. J., Staples R., Striegl R. G., Zhulidov A. V., Zimov S. A. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas // Estuaries and Coasts. 2012. V. 35. P. 369–382.

Hugelius G., Loisel J., Chadburn S., Jackson R. B., Jones M., MacDonald G. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw // PNAS. 2020. V. 117. N. 34. P. 20438–20446.

Hugelius G., Strauss J., Zubrzycki S., Harden J. W., Schuur E. A. G., Ping C. L. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps // Biogeosciences. 2014. V. 11. Iss. 23. P. 6573–6593.

Kharuk V. I., Ranson K. J., Dvinskaya M. L., Im S. T. Wildfires in northern Siberian larch dominated communities // Environ. Res. Lett. 2011. V. 6. N. 4. Article 045208. 6 p.

Kirdyanov A.V., Saurer M., Siegwolf R., Knorre A. A., Prokushkin A. S, Churakova (Sidorova) O. V, Fonti M. V., Büntgen U. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia // Environ. Res. Lett. 2020. V. 15. N. 3. Article 034061. 11 p.

Knorre A. A., Kirdyanov A. V., Prokushkin A. S., Krusic P. J.,. Büntgen U. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia // Sci. Total Environ. 2019. V. 652. P. 314–319.

Kolosov R. A., Prokushkin A. S., Pokrovsky O. S. Major anion and cation fluxes from the Central Siberian Plateau watersheds with underlying permafrost // IOP Conf. Ser.: Earth and Environ. Sci. 2016. V. 48. N. 1. Article 012018. 6 p.

MacLean R., Oswood M. W., Irons J. G. III and McDowell W. H. The effect of permafrost on stream biogeochemistry: a case study of two streams in the Alaskan (U.S.A.) taiga // Biogeochemistry. 1999. V. 47. Iss. 3. P. 239–267.

McKnight D. M., Boyer E. W., Westerhoff P. K., Doran P. T., Kulbe T., Andersen D. T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity // Limnol. Oceanogr. 2001. V. 46. Iss. 1. P. 38–48.

Myers-Pigg A. N., Louchouarn P., Amon R. M. W., Prokushkin A., Pierce K., Rubtsov A. Labile pyrogenic dissolved organic carbon in major Siberian Arctic rivers: Implications for wildfire-stream metabolic linkages // Geophys. Res. Lett. 2015. V. 42. Iss. 2. P. 377–385.

Ol'chev A. V., Zyryanov V. I., Satosina E. M., Fokeev E. V., Mukhartova Yu. V., Novenko E. Yu., Prokushkin A. S. Seasonal variability of carbon dioxide, sensible and latent heat fluxes in a northern taiga larch forest of Central Siberia for eddy covariance flux measurements // Rus. Meteorol. Hydrol. 2022. V. 47. Iss. 10. P. 804–811 (Original Rus. text © A. V. Ol’chev, V. I. Zyryanov, E. M. Satosina, E. V. Fokeev, Yu. V. Mukhartova, E. Yu. Novenko, A. S. Prokushkin, 2022, publ. in Meteorol. i gidrol. 2022. N. 10. P. 111–120).

Palviainen M., Laurén A., Pumpanen J., Bergeron Y., Bond-Lamberty B., Larjavaara M., Kashian D. M., Köster K., Prokushkin A., Chen H. Y. H., Seedre M., Wardle D. A., Gundale M. J., Nilsson M.-C., Wang C., Berninger F. Decadal-scale recovery of carbon stocks after wildfires throughout the boreal forests // Global Biogeochem. Cycles. 2020. V. 34. Iss. 8. P. Article 6612. 17 p.

Parham L. M., Prokushkin A. S. Pokrovsky O. S., Titov S. V., Grekova E., Shirokova L. S., McDowell W. H. Permafrost and fire as regulators of stream chemistry in basins of the Central Siberian Plateau // Biogeochemistry. 2013. V. 116. Iss. 1–3. P. 55–68.

Peterson B. J. Holmes R. M., McClelland J. W., Vorosmarty C. J., Lammers R. B., Shiklomanov A. I., Shiklomanov I. A., Rahmstorf S. Increasing river discharge to the Arctic Ocean // Science. 2002. V. 298. N. 5601. P. 2171–2173.

Ponomarev E., Masyagina O., Litvintsev K., Ponomareva T., Shvetsov E., Finnikov K. The effect of post-fire disturbances on a seasonally thawed layer in the permafrost larch forests of Central Siberia // Forests. 2020. V. 11. N. 8. Article 790. 18 p.

Ponomarev E. I., Ponomareva T. V., Prokushkin A. S. Intraseasonal dynamics of river discharge and burned forest areas in Siberia // Water. 2019. V. 11. N. 6. Article 1146. 11 p.

Prokushkin A. S., Gleixner G., McDowell W. H., Ruehlow S., Schulze E.-D. Source- and substrate-specific export of dissolved organic matter from permafrost-dominated forested watershed in Central Siberia // Global Biogeochem. Cycles. 2007. V. 21 Iss. 4. Article 2938. 12 p.

Prokushkin A. S., Pokrovsky O. S., Shirokova L. S., Korets M. A., Viers J., Prokushkin S. G., Amon R., Guggenberger G., McDowell W. H. Sources and flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau // Environ. Res. Let. 2011. V. 6. N. 4. Article 045212. 14 p.

Prokushkin S. G., Bogdanov V. V., Prokushkin A. S., Tokareva I. V. Post-fire restoration of organic substance in the ground cover of the larch forests in permafrost zone of Central Evenkia) // Biol. Bull. Rus. Acad. Sci. 2011. V. 38. Iss. 2. P. 183–190 (Original Rus. text © S. G. Prokushkin, V. V. Bogdanov, A. S. Prokushkin, I. V. Tokareva, 2011, publ. in Izv. RAN. Ser. Biol. 2011. N. 2. P. 227–234).

Prokushkin S. G., Zyryanova O. A., Prokushkin A. S. Phytomass reserves and distribution of biogenic elements in Gmelin larch stands in Central Evenkia (Using the example of a small drainage basin) // Biol. Bull. Rus. Acad. Sci. 2021. V. 48. N. 1. P. 84–93 (Original Rus. text © S. G. Prokushkin, O. A. Zyryanova, A. S. Prokushkin, 2021, publ. in Izv. RAN. Ser. Biol. 2021. N. 1. P. 93–102).

Rawlins M. A., Steele M., Holland M. M., Adam J. C., Cherry J. E., Francis J. A., Groisman P. Y., Hinzman L. D., Huntington T. G., Kane D. L., Kimball J. S., Kwok R., Lammers R. B., Lee C. M., Lettenmaier D. P., McDonald K. C., Podest E., Pundsack J. W., Rudels B., Serreze Mark C., Shiklomanov A., Skagseth O., Troy T. J., Vorosmarty C. J., Wensnahan M., Wood E. F., Woodgate R., Yang D., Zhang K., Zhang T. Analysis of the Arctic system for freshwater cycle intensification: observations and expectations // J. Clim. 2010. V. 23. Iss. 21. P. 5715–5737.

Startsev V. V., Dymov A. A., Prokushkin A. S. Soils of postpyrogenic larch stands in Central Siberia: morphology, physicochemical properties, and specificity of soil organic matter // Euras. Soil Sci. 2017. V. 50. N. 8. P. 885–897 (Original Rus. text © V. V. Startsev, A. A. Dymov, A. S. Prokushkin, 2017, publ. in Pochvovedenie. 2017. N. 8. P. 912–925).

Tank S. E., McClelland J. W., Spencer R. G. M. Recent trends in the chemistry of major northern rivers signal widespread Arctic change // Nature Geosci. 2023. V. 16. Iss. 9. P. 789–796.

Tarnocai C., Canadell J. G., Schuur E. A. G., Kuhry P., Mazhitova G., Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region // Global Biogeochem. Cycles. 2009. V. 23. Iss. 2. Article 3327. 11 p.

Tchebakova N. M., Parfenova E. I., Soja A. J. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate // Environ. Res. Lett. 2009. V. 4. N. 4. Article 045013. 9 p.

Vygodskaya N. N., Milyukova I., Varlagin A., Tatarinov F., Sogachev A., Kobak K. I., Desyatkin R., Bauer G., Hollinger D. Y., Kelliher F. M., Schulze E.-D. Leaf conductance and CO2 assimilation of Larix gmelinii growing in an eastern Siberian boreal forest // Tree Physiol. 1997. N. 17. Iss. 10. P. 607–615.

Weishaar J. L., Aiken G. R., Bergamaschi B. A., Fram M. S., Fujii R. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon // Environ. Sci. Technol. 2003. V. 37. Iss. 20. P. 4702–4708.


Вернуться к списку статей