RU EN

Меню страницы:

Статьи 2024 г.

Ключевые слова:
лесные насекомые – филлофаги, учеты численности, многолетняя динамика, модели, авторегрессия, запас по устойчивости
Страницы:
110–122

Реферат

УДК 595.7:591.53

Суховольский В. Г.1, Тарасова О. В.2 Долгосрочная динамика численности лесных насекомых в Краснотуранском сосновом бору // Сибирский лесной журнал. 2024. № 3. С. 110–122.

DOI: 10.15372/SJFS20240311

EDN: …

© Суховольский В. Г., Тарасова О. В., 2024

Описан опыт долгосрочного исследования динамики численности насекомых – филлофагов в Краснотуранском сосновом бору (юг Красноярского края). В течение 40 лет (1978–2017 гг.) проводились регулярные учеты численности пяти видов филлофагов в пяти ландшафтных структурах. На основе полученных данных были предложены модели динамики численности популяций этих видов. В основу моделей было положено представление о существовании положительных и отрицательных обратных связей в популяциях. Такой подход позволил не учитывать воздействие паразитоидов на насекомых. Для расчетов была предложена авторегрессионная (AR)-модель, согласно которой текущая плотность линейно зависит от плотностей предыдущих лет. Коэффициенты модели вычислялись по данным многолетних учетов. Было показано, что для большинства популяций характерно влияние плотности прошедшего сезона на текущую плотность в форме положительной обратной связи и влияние на текущую плотность плотности пред-предыдущего сезона в форме отрицательной обратной связи. Рассмотрены характеристики устойчивости популяционной динамики отдельных видов в различных местообитаниях. В качестве характеристик устойчивости использованы показатели запаса по устойчивости, широко используемых в теории управления. Показано, что запас по устойчивости для пилильщиков несколько больше, чем для других групп видов, что согласуется с меньшей дисперсией численности популяций этих видов при многолетних учетах. Использование AR-моделей и характеристики запаса по устойчивости позволило классифицировать ландшафтные структуры на территории Краснотуранского бора по рискам возникновения в этих ландшафтах вспышек массового размножения.    

Текст статьи


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Андерсон Т. Статистический анализ временных рядов. М.: Мир. 1976. 755 с. [Anderson T. Statisticheskiy analiz vremennykh ryadov (Statistical analisis of time series) Moscow: Mir, 1976. 755 p. (in Russian)].

Бокс Д., Дженкинс Г. Анализ временных рядов. Прогноз и управление. Вып. 1. М.: Мир, 1974. 406 с. [Box D., Jenkins G. Analiz vremennykh ryadov. Prognoz i upravlenie. Vyp. 1 (Time series analysis. Forecast and management. Iss. 1.). Moscow: Mir, 1974. 406 p. (in Russian)].

Гайдук А. Р., Беляев В. Е., Пьявченко Т. А. Теория автоматического управления в примерах и задачах с решениями в MATLAB: учеб. пособ. 7-е изд., стер. СПб.: Лань, 2023. 464 с. [Gayduk A. R., Belyaev V. E., P'yavchenko T. A. Teoriya avtomaticheskogo upravleniya v primerakh i zadachakh s resheniyami v MATLAB: ucheb. posob. 7-e izd., ster. (Theory of automatic control in examples and tasks with solution in MATLAB: tutorial. 7th ed., ster.). St. Petersburg: Lan’, 2023. 464 p. (in Russian)].

Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения. М.: Мир, 1971. Вып. 1. 316 с.; Вып. 2. 287 с. [Jenkins G., Vatts D. Spektral’ny analiz i ego prilozheniya (Spectral analysis and its applications). Moscow: Mir, 1971. Iss. 1. 316 p.; Iss. 2. 287 p. (in Russian)].

Дорф Р. К., Бишоп P. X. Современные системы управления. М.: Лаб. базовых знаний, 2004. 832 c. [Dorf R. K., Bishop P. X. Sovremennye sistemy upravleniya (Modern control systems). Moscow: Lab. bazovykh znaniy (Lab. base knowl.), 2004. 832 p. (in Russian)].

Кендалл М. Д., Стьюарт А. Многомерный статистический анализ и временные ряды. М.: Наука. 1976. 736 с. [Kendall M. D., Stuart A. Mnogomerny statisticheskiy analiz i vremennye ryady (Multivariate statistical analysis and time series). Moscow: Nauka (Science), 1976. 736 p. (in Russian)].

Ким Д. П. Теория автоматического управления. Т. 1. М.: Физматлит, 2007. 312 с. [Kim D. P. Teoriya avtomaticheskogo upravleniya (The theory of automatic control). V. 1. Moscow: Fizmatlit, 2007. 312 p. (in Russian)].

Киреев Д. М. Методы изучения лесов по аэроснимкам. Новосибирск: Наука. Сиб. отд-ние, 1977. 213 с. [Kireev D. M. Metody izucheniya lesov po aerosnimkam (Methods for studying forests from aerial photographs). Novosibirsk: Nauka. Sib. otd-nie (Science. Sib. Br.), 1977. 213 p. (in Russian)].

Марпл мл. С. Л. Цифровой спектральный анализ и его приложения. М.: Мир, 1990. 584 с. [Marpl Jr. S. L. Tsifrovoy spektral’ny analiz i ego prilozheniya (Digital spectral analysis and its applications). Moscow: Mir, 1990. 584 p. (in Russian)].

Пальникова Е. Н. Экология и лесохозяйственное значение сосновой пяденицы в лесостепных борах Средней Сибири: Дис. … канд. биол. наук: 03.00.09. Красноярск: Ин-т леса и древесины им. В. Н. Сукачева СО АН СССР, 1984. 207 с. [Pal’nikova E. N. Ekologiya i lesokhozyaystvennoe znachenie sosnovoy pyadenitsy v lesostepnykh borakh Sredney Sibiri: Dis. … kand. biol. nauk: 03.00.09 (Ecology and forestry significance of pine moth in forest-steppe forests of Central Siberia: Cand. Biol. Sci. (PhD) Dissertation: 03.00.09 (Entomology). Krasnoyarsk: In-t lesa i drevesiny im. V. N. Sukacheva SO AN SSSR, 1984. 207 p. (in Russian)].

Пальникова Е. Н. Сосновая пяденица в лесостепных борах Сибири (экология, динамика численности, влияние на насаждения): Дис. … д-ра с.-х. наук: 03.00.16. Красноярск: СибГТУ, 2000. 369 с. [Pal'nikova E. N. Sosnovaya pyadenitsa v lesostepnykh borakh Sibiri (ekologiya, dinamika chislennosti, vliyanie na nasazhdeniya): Dis. … d-ra s.-kh. nauk: 03.00.16 (Pine moth in forest-steppe forests of Siberia (ecology, population dynamics, impact on stands): Dr. Agr. Sci. (DSc) Dissertation: 03.00.16 (Ecology). Krasnoyarsk: SibGTU (Sib. St. Tecnol. Univ.), 2000. 369 p. (in Russian)].

Пальникова Е. Н., Свидерская И. В., Суховольский В. Г. Сосновая пяденица в лесах Сибири. Новосибирск: Наука, 2002. 252 с. [Pal’nikova E. N., Sviderskaya I. V., Sukhovol’skiy V. G. Sosnovaya pyadenitsa v lesakh Sibiri (Pine looper in the forests of Siberia). Novosibirsk: Nauka (Science), 2002. 252 p. (in Russian)].

Поллард Д. Справочник по вычислительным методам статистики. М.: Финансы и статистика, 1982. 344 с. [Pollard D. Spravochnik po vychislitel’nym metodam statistiki (Handbook of computational statistics methods). Moscow: Finansy i statistika, 1982. 344 p. (in Russian)].

Суховольский В. Г. Исследование взаимодействия дерева с насекомыми на основе анализа диэлектрических свойств тканей хвойных: Автореф. дис. … канд. биол. наук: 03.00.16. Красноярск: Ин-т леса и древесины им. В. Н. Сукачева СО АН СССР, 1984. 179 с. [Sukhovolskiy V. G. Issledovanie vzaimodeystviya dereva s nasekomymi na osnove analiza dielektricheskih svoystv tkaney khvoynykh: Avtoref. dis. … kand. biol. nauk: 03.00.16 (Study of the interaction of wood with insects based on the analysis of the dielectric properties of coniferous tissues: Cand. Biol. Sci. (PhD) Dissertation: 03.00.16 (Ecology). Krasnoyarsk: In-t lesa i drevesiny im. V. N. Sukacheva SO AN SSSR (V. N. Sukachev Inst. For. & Timber Sib. Br. USSR Acad. Sci.), 1984. 179 p. (in Russian)].

Суховольский В. Г. Моделирование роста деревьев и взаимодействия лесных насекомых с древесными растениями: оптимизационный подход: Автореф. дис. … д-ра биол. наук: 03.00.02. Красноярск: Ин-т биофиз. СО РАН, 1996. 31 с. [Sukhovolskiy V. G. Modelirovanie rosta derev’ev i vzaimodeystviya lesnykh nasekomykh s drevesnymi rasteniyami: optimizatsionny podkhod: Avtoref. dis. … d-ra biol. nauk: 03.00.02 (Modeling of tree growth and interaction of forest insects with woody plants: an optimization approach): Dr. Biol. Sci. (DSc) thesis: 03.00.02 (Biophysics). Krasnoyarsk: In-t biofiz. SO RAN (Inst. Biophys. Sib. Br. Rus. Acad. Sci.), 1996. 31 p. (in Russian)].

Тарасова О. В. Ландшафтно-экологическая специфика вредной лесной энтомофауны Минусинских ленточных боров // Насекомые лесостепных боров Сибири. Новосибирск: Наука. Сиб. отд-ние, 1982. С. 18–34 [Tarasova O. V. Landshaftno-ekologicheskaya spetsifika vrednoy lesnoy entomofauny Minusinskikh lentochnykh borov (Landscape and ecological specificity of harmful forest insect fauna of the Minusinsk belt forests) // Nasekomye lesostepnykh borov Sibiri (Insects of forest-steppe forests of Siberia). Novosibirsk: Nauka. Sib. otd-nie (Science. Sib. Br.), 1982. P. 18–34 (in Russian)].

Тарасова О. В. Ландшафтно-экологический анализ комплекса хвоегрызущих насекомых ленточных боров Средней Сибири: Дис. … канд. биол. наук: 03.00.16. Красноярск: Ин-т леса и древесины им. В. Н. Сукачева СО АН СССР, 1983. 156 с. [Tarasova O. V. Landshaftno-ekologicheskiy analiz kompleksa khvoegryzushchikh nasekomykh lentochnykh borov Sredney Sibiri: Dis. … kand. biol. nauk: 03.00.16 (Landscape-ecological analysis of the complex of needle-eating insects of the belt pine forests of Central Siberia: Cand. Biol. Sci. (PhD) Dissertation: 03.00.16 (Ecology). Krasnoyarsk: In-t lesa i drevesiny im. V. N. Sukacheva SO AN SSSR (V. N. Sukachev Inst. For. & Timber Sib. Br. USSR Acad. Sci.), 1983. 156 p. (in Russian)].

Тарасова О. В. Насекомые-филлофаги зеленых насаждений городов: особенности структуры энтомокомплексов, динамики численности популяций и взаимодействия с кормовыми растениями: Дис. … д-ра с.-х. наук: 03.00.16. Красноярск: СибГТУ, 2004. 360 с. [Tarasova O. V. Nasekomye-fillofagi zelenykh nasazhdeniy gorodov: osobennosti struktury entomokompleksov, dinamiki chislennosti populyatsiy i vzaimodeystviya s kormovymi rasteniyami: Dis. … d-ra s.-kh. nauk: 03.00.16 (Insects-phyllophages of urban green spaces: features of the structure of entomological complexes, population dynamics and interaction with food plants: Dr. Agr. Sci. (DSc) Dissertation: 03.00.16 (Ecology). Krasnoyarsk: SibGTU (Sib. St. Tecnol. Univ.), 2004. 360 p. (in Russian)].

Тарасова О. В., Суховольский В. Г., Солдатов В. В. Памяти Елены Николаевны Пальниковой (1954 – 2018) // Дендрофильные беспозвоночные животные и грибы и их роль в лесных экосистемах. XI чтения памяти О. А. Катаева. Мат-лы Всерос. конф. с междунар. участ., Санкт-Петербург, 24–27 ноября 2020 г. СПб.: СПбГЛТУ, 2020 С. 43–44 [Tarasova O. V., Sukhovol’skiy V. G., Soldatov V. V. Pamyati Eleny Nikolaevny Pal'nikovoy (1954 – 2018) (In memory of Elena Nikolaevna Pal’nikova)] // Dendrofil’nye bespozvonochnye zhivotnye i griby i ikh rol’ v lesnykh ekosistemakh. XI chteniya pamyati O. A. Kataeva: Mat-ly Vseros. konf. s mezhdunar. uchast., St. Petersburg, 24-27 noyabrya 2020 g. (Dendrophilous invertebrate animals and fungi and their role in forest ecosystems. XI reading in memory of O. A. Kataev. Proc. All-Rus. Conf. Int. Particip., St. Petersburg, 24–27 Nov., 2020). St. Petersburg: SPbGLTU (St. Petersburg St. For. Engineer. Univ.), 2020. P. 43–44 (in Russian with English abstract)].

Тарасова О. В., Солдатов В. В., Ковалев А. В., Суховольский В. Г. Елена Николаевна Пальникова (12.03.1954 – 26.11.2018) // Сиб. лесн. журн. 2024. № 3. 4 с. (сетевое изд.). [Tarasova O. V., Soldatov V. V., Kovalev A. V., Suhovol’skiy V. G. Elena Nikolaevna Pal’nikova (12.03.1954 – 26.11.2018) // Sib. lesn. zhurn. (Sib. J. For. Sci.). 2024. N. 3. 4 p. (online ed.) (in Russian with English abstract and references)].

Хемминг Р. В. Цифровые фильтры. М.: Недра, 1987. 221 с. [Khemming R. V. Tsifrovye fil’try (Digital filters). Moscow: Nedra, 1987. 221 p. (in Russian)].

Baars M. A., Van-Dijk T. S. Population dynamics of two carabid beetles at a Dutch heathland 1. Subpopulation fluctuations in relation to weather and dispersal // J. Animal Ecol. 1984. V. 53. N. 2. P. 375–388.

Baltensweiler W. Zeiraphera griceana Hubner (Lepidoptera, Tortricedae) in the European Alps. A contribution to the problem of cycles // Can. Entomol. 1964. V. 96. N. 5. P. 792–800.

Bascompte J., Sole R. V. Spatiotemporal patterns in nature // Trends Ecol. Evol. 1998. V. 13. Iss. 5. P. 173–174.

Bentz B. J., Regniere J., Fettig C. J., Hansen E. M., Hayes J. L., Hicke J. A., Kelsey R. G., Negro´n J. F., Seybold S. J. Climate change and bark beetles of the Western United States and Canada: direct and indirect effects // Bioscience. 2010. V. 60. Iss. P. 602–613.

Bentz B., Vandygriff J., Jensen C., Coleman T., Maloney P., Smith S., Grady A., Schen-Langenheim G. Mountain pine beetle voltinism and life history characteristics across latitudinal and elevational gradients in the western United States // For. Sci. 2014. V. 60. Iss. 3. P. 434–449.

Bjørnstad O. N., Bascompte J. Synchrony and second-order spatial correlation in host-parasitoid system // J. Animal Ecol. 2002. V. 70. Iss. 6. P. 924–933.

Bjørnstad O. N., Ims R. A., Lambin X. Spatial population dynamics: analyzing patterns and processes of population synchrony // Trends Ecol. Evol. 1999. V. 14. Iss. 11. P. 427–432.

Bone C., Wulder M. A., White J. C., Robertson C., Nelson T. A. A GIS-based risk rating of forest insect outbreaks using aerial overview surveys and the local Moran's I statistic //Appl. Geogr. 2013. V. 40. P. 161–170.

Buonaccorsi J. P., Elkinton J. S., Evans S. R., Liebhold A. Measuring and testing for spatial synchrony // Ecology. 2001. V. 82. Iss. 6. P. 1668–1679.

Chapman T. B., Veblen T. T., Schoennagel T. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains // Ecology. 2012. V. 93. Iss. 10. P. 2175–2185.

Choi W. I., Ryoo M. I., Chung Y.-J., Park Y.-S. Geographical variation in the population dynamics of Thecodiplosis japonensis: causes and effects on spatial synchrony // Popul. Ecol. 2011. V. 53. N. 3. P. 429–439.

Curran L. M., Webb C. O. Experimental test of the spatiotemporal scale of seeds predation in mast-fruiting Dipterocarpaceae // Ecol. Monogr. 2000. V. 70. Iss. 1. P. 129–148.

Elton C., Nicholson M. The ten-year cycle in numbers of the lynx in Canada // J. Animal Ecol. 1942. V. 11. N. 2. P. 215–244.

Foster J. R., Townsend P. A., Mladenoff D. J. Spatial dynamics of a gypsy moth defoliation outbreak and dependence on habitat characteristics // Landscape Ecol. 2013. V. 28. N. 7. P. 1307–1320.

Hanski I., Woiwood I. P. Spatial synchrony in the dynamics of moth and aphid populations // J. Animal Ecol. 1993. V. 62. N. 4. P. 656–668.

Hart S. J., Veblen T. T., Eisenhart K. S., Jarvis D., Kulakowski D. Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado // Ecology. 2014. V. 95. Iss. 4. P. 930–939.

Haydon D., Steen H. The effect of large- and small-scale random events on the synchrony of metapopulation dynamics: a theoretical analysis // Proc. Royal Soc. London. Ser. B. Biol. Sci. 1997. V. 264. N. 1386. P. 1375–1381.

Haynes K. J., Liebhold A. M., Johnson D. M. Elevational gradient in the cyclicity of a forest-defoliating insect // Popul. Ecol. 2012. V. 54. N. 2. P. 239–250.

Henttonen H., McGuire D., Hansson L. Comparisons of amplitude and frequencies (spectral analyses) of density variations in long-term data sets of Clethrionomys species // Ann. Zool. Fenn. 1985. V. 22. N. 3. P. 221–229.

Herrero A., Zamora R., Castro J., Hodar J. A. Limits of pine forest distribution at the treeline: herbivory matters // Plant Ecol. 2012. V. 213. N. 3. P. 459–469.

Isaev A. S, Soukhovolsky V. G., Tarasova O. V., Palnikova E. N., Kovalev A. V. Forest insect population dynamics, outbreaks and global warming effects. N. Y.: Wiley, 2017. 298 p.

Kapeller S., Schroeder H., Schueler S. Modelling the spatial population dynamics of the green oak leaf roller (Tortrix viridana) using density dependent competitive interactions: Effects of herbivore mortality and varying host-plant quality // Ecol. Model. 2011. V. 222. N. 7. P. 1293–1302.

Liebhold A., Kamata N. Are population cycles and spatial synchrony a universal characteristic of forest insect populations? // Popul. Ecol. 2000. V. 42. Iss. 3. P. 205–209.

Liebhold A., Koenig W., Bjornstad O. N. Spatial synchrony in population dynamics // Ann. Rev. Ecol. Evol. Syst. 2004. V. 35. Iss. 1. P. 467–490.

Maron J. L., Harrison S. Spatial patterns formation in an insect host-parasitoid system // Science. 1997. V. 278. Iss. 5343. P. 1619–1621.

Miller W. E., Epstein M. E. Synchronous population fluctuations among moth species (Lepidoptera) // Environ. Entomol. 1986. V. 15. Iss. 3. P. 443–447.

Moran P. A. P. The statistical analysis of the Canadian lynx cycle. II. Synchronization and meteorology // Austral. J. Zool. 1953. V. 1. Iss. 3. P. 291–298.

Myers J. H. Synchrony in outbreaks of forest Lepidoptera: a possible example of the Moran effect // Ecology. 1998. V. 79. N. 3. P. 1111–1117.

Peltonen V., Liebhold A., Bjornstad O. N., Williams D. W. Spatial synchrony in forest insect outbreaks: roles of regional stochasticity and dispersal // Ecology. 2002. V. 83. Iss. 11. P. 3120–3129.

Peterson R. O., Page R. E. The rise and fall of Isle Royale wolves, 1975-1986 // J. Mammalogy. 1988. V. 69. N. 1. P. 89–99.

Peterson R. O., Thomas N. J., Thurber J. M., Vucetich J. A., Waite T. A. Population limitation and the wolves of Isle Royale // J. Mammalogy. 1998. V. 79. N. 3. P. 487–841.

Pollard E. Population ecology and change in range of the white admiral butterfly Ladoga Camilla L. in England // Ecol. Entomol. 1979. V. 4. Iss. 1. P. 61–74.

Raffa K. F., Aukema B. H., Bentz B. J., Carroll A. L., Hicke J. A., Turner M. G., Romme W. H. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions // Bioscience. 2008. V. 58. Iss. 6. P. 501–517.

Ranta E., Kaitala V., Lundberg P. Population variability in space and time: the dynamics of synchronous populations // Oikos. 1998. V. 83. N. 2. P. 376–382.

Schowalter T. D. Insect responses to major landscape-level disturbance // Ann. Rev. Entomol. 2012. V. 57. Iss. 1. P. 1–20.

Schwerdtfeger F. Untersuchungen uber der eisen Bestand fon Kiefernspanner (Bupalus piniarius L.), Forleule (Panolis flammea Schiff.) und Kiefernswarmer (Hyloicus pinastri L.) // Zeitschrift fur angew. Entomol. 1952. Bd. 34. N. 2. S. 216–283.

Schwerdtfeger F. Okologie der Tiere. 2. Demokologie. Hamburg, Berlin: Verl. Paul Parey, 1968. 448 p.

Seidl R., Müller J., Hothorn T., Bässler C., Heurich M., Kautz M. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle // J. Appl. Ecol. 2016. V. 53. Iss. 2. P. 530–540.

Senf C., Campbell E. M., Pflugmacher D., Wulder M. A., Hostert P. A multi-scale analysis of western spruce budworm outbreak dynamics // Landscape Ecol. 2017. V. 32. Iss. 3. P. 501–514.

Sherriff R. L., Berg E. E., Miller A. E. Climate variability and spruce beetle (Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska // Ecology. 2011. V. 92. Iss. 7. P. 1459–1470.

Sutcliffe O. L., Thomas C. D., Yates T. J., Greatorex-Devies J. N. Correlation extinctions, colonisations and population fluctuations in a highly connected ringlet butterfly metapopulation // Oecologia. 1997. V. 109. N. 2. P. 235–241.

Van Rossum F., Triest L. Stepping-stone populations in linear landscape elements increase pollen dispersal between urban forest fragments // Plant Ecol. Evol. 2012. V. 145. N. 3. P. 332–340.

Volney W. J. A., Fleming R. A. Climate change and impacts of boreal forest insects // Agr. Ecosyst. Environ. 2000. V. 82. Iss. 1–3. P. 283–294.

Williams D. W., Liebhold A. Influence of weather on synchrony of gypsy moth (Lepidoptera: Lymantridae) outbreaks in New England // Environ. Entomol. 1995. V. 24. P. 987–995.

Wolves & moose of Isle Royale, 2024. https://isleroyalewolf.org/


Приложение к статье В. Г. Суховольский, О. В. Тарасова 

Долгосрочная динамика популяций лесных насекомых: опыт 40-летних исследований в Краснотуранском сосновом бору // Сибирский лесной журнал. 2024. № 3. С. ...


y(i) = 0.24 lnx (i - 1) + 0.52 lnx(i) + 0.24 lnx(i + 1)         (2);


Таблица 1П. Параметры уравнения (2), коэффициенты и их значимость для Bupalis piniarius в различных урочищах Краснотуранского бора

Переменные

Коэффициенты

Стандарт.

ошибка

t-критерий

p

Вершина сопки

a0

–0.420

0.131

–3.196

0.003

y(i–2)

–0.800

0.102

–7.830

0.000

y(i–1)

1.597

0.104

15.426

0.000

adjR2

0.930

F

211.0

h

0.09

Плакор

a0

–0.378

0.144

–2.618

0.014

y(i–2)

–0.749

0.112

–6.680

0.000

y(i–1)

1.527

0.116

13.198

0.000

adjR2

0.900

F

143.800

h

0.12

Озеро

a0

–0.607

0.221

–2.751

0.010

y(i–2)

–0.657

0.136

–4.842

0.000

y(i–1)

1.432

0.135

10.570

0.000

adjR2

0.850

F

93.400

h

0.16

Терраса

a0

–0.565

0.235

–2.406

0.022

y(i–2)

–0.530

0.155

–3.427

0.002

y(i–1)

1.339

0.159

8.410

0.000

adjR2

0.820

F

74.400

h

0.19

Дюна

a0

–0.186

0.084

–2.209

0.035

y(i–2)

–0.799

0.100

–7.986

0.000

y(i–1)

1.640

0.104

15.821

0.000

adjR2

0.940

F

262.800

h

0.08


Таблица 2П. Параметры уравнения (2), коэффициенты и их значимость для Semiothisa liturata в различных урочищах Краснотуранского бора

Переменные

Коэффициенты

Стандарт.

ошибка

t-критерий

p

Вершина сопки

a0

–1.069

0.246

–4.348

0.000

y(i–2)

–0.766

0.118

–6.513

0.000

y(i–1)

1.439

0.117

12.331

0.000

adjR2

0.850

F

94.700

h

0.13

Плакор

a0

–1.302

0.310

–4.204

0.000

y(i–2)

–0.707

0.128

–5.524

0.000

y(i–1)

1.340

0.127

10.540

0.000

adjR2

0.800

F

65.700

h

0.18

Озеро

a0

–0.810

0.191

–4.250

0.000

y(i–2)

–0.832

0.103

–8.073

0.000

y(i–1)

1.536

0.103

14.877

0.000

adjR2

0.900

F

41.200

h

0.09

Терраса

a0

–0.875

0.195

–4.493

0.000

y(i–2)

–0.806

0.109

–7.423

0.000

y(i–1)

1.487

0.107

13.958

0.000

adjR2

0.880

F

125.400

h

0.11

Дюна

a0

–0.816

0.184

–4.434

0.000

y(i–2)

–0.801

0.104

–7.674

0.000

y(i–1)

1.511

0.106

14.290

0.000

adjR2

0.890

F

134.300

h

0.11


Таблица 3П. Параметры уравнения (2), коэффициенты и их значимость для Gilpinia virens в различных урочищах Краснотуранского бора

Переменные

Коэффициенты

Стандарт.

ошибка

t-критерий

p

Вершина сопки

a0

–1.463

0.491

–2.982

0.006

y(i–4)

–0.403

0.158

–2.552

0.017

y(i–3)

0.798

0.239

3.336

0.002

y(i–2)

–1.126

0.247

–4.549

0.000

y(i–1)

1.243

0.173

7.183

0.000

adjR2

0.620

F

13.500

h

0.92

Озеро

a0

–1.368

0.268

–5.095

0.000

y(i–2)

–0.657

0.116

–5.658

0.000

y(i–1)

1.117

0.126

8.857

0.000

adjR2

0.700

F

39.300

h

0.25

Плакор

a0

–1.011

0.357

–2.832

0.008

y(i–2)

–0.426

0.166

–2.570

0.015

y(i–1)

1.086

0.165

6.571

0.000

adjR2

0.620

F

28.100

h

0.32

Терраса

a0

–1.795

0.300

–5.977

0.000

y(i–2)

–0.684

0.113

–6.039

0.000

y(i–1)

1.117

0.121

9.210

0.000

adjR2

0.715

F

42.500

h

0.24

Дюна

a0

–1.071

0.289

–3.702

0.001

y(i–2)

–0.565

0.147

–3.844

0.001

y(i–1)

1.133

0.158

7.171

0.000

adjR2

0.615

F

27.400

h

0.29


Таблица 4П. Параметры уравнения (2), коэффициенты и их значимость для Microdiprion pallipes в различных урочищах Краснотуранского бора 

Переменные

Коэффициенты

Стандарт.

ошибка

t–критерий

p

Вершина сопки

а0

–1.099

0.313

–3.508

0.002

y(i–4)

–0.559

0.151

–3.696

0.001

y(i–3)

1.119

0.259

4.318

0.000

y(i–2)

–1.480

0.258

–5.733

0.000

y(i–1)

1.556

0.156

9.980

0.000

adjR2

0.810

F

33.200

h

0.64

Плакор

a0

–0.630

0.349

–1.803

0.082

y(i–3)

0.454

0.172

2.633

0.013

y(i–2)

–1.195

0.265

–4.501

0.000

y(i–1)

1.561

0.172

9.100

0.000

adjR2

0.800

F

43.500

h

0.30

Озеро

a0

–0.857

0.318

–2.694

0.012

y(i–4)

–0.507

0.172

–2.942

0.007

y(i–3)

1.169

0.306

3.824

0.001

y(i–2)

–1.582

0.299

–5.295

0.000

y(i–1)

1.653

0.169

9.754

0.000

adjR2

0.820

F

35.500

h

0.38

Терраса

a0

–1.036

0.416

–2.489

0.019

y(i–3)

0.469

0.158

2.962

0.006

y(i–2)

–1.332

0.223

–5.973

0.000

y(i–1)

1.574

0.159

9.908

0.000

adjR2

0.820

F

48.200

h

0.75

Дюна

a0

–0.994

0.329

–3.021

0.005

y(i–2)

–0.527

0.154

–3.411

0.002

y(i–1)

1.245

0.157

7.908

0.000

adjR2

0.750

F

47.500

h

0.24


Таблица 5П. Параметры уравнения (2), коэффициенты и их значимость для D. pini в различных урочищах Краснотуранского бора 

Переменные

Коэффициенты

Стандарт.

ошибка

t–критерий

p

Вершина сопки

a0

–0.861

0.199

–4.332

0.000

y(i–2)

–0.794

0.110

–7.188

0.000

y(i–1)

1.503

0.110

13.626

0.000

adjR2

0.880

F

125.100

h

0.11

Плакор

a0

–0.847

0.215

–3.945

0.000

y(i–2)

–0.764

0.116

–6.581

0.000

y(i–1)

1.483

0.115

12.875

0.000

adjR2

0.870

F

114.8

h

0.12

Озеро

а0

–1.012

0.247

–4.104

0.000

y(i–2)

–0.771

0.119

–6.465

0.000

y(i–1)

1.457

0.118

12.304

0.000

adjR2

0.850

F

94.800

h

0.13

Терраса

а0

–0.845

0.214

–3.950

0.000

y(i–2)

–0.762

0.116

–6.543

0.000

y(i–1)

1.443

0.116

12.394

0.000

adjR2

0.850

F

96.800

h

0.13

Дюна

a0

–0.630

0.165

–3.806

0.001

y(i–2)

–0.809

0.107

–7.592

0.000

y(i–1)

1.560

0.107

14.640

0.000

adrR2

0.900

F

156.8

h

0.10



Вернуться к списку статей