Статьи 2025 г.
Уральский государственный лесотехнический университет
ул. Сибирский тракт, 37, Екатеринбург, 620100 Российская Федерация
E-mail: Usoltsev50@mail.ru
Реферат
* Статья публикуется в сетевом издании
УДК 630*52:674.038.15
Усольцев В. А. Квалиметрия лесных деревьев. 1. Oбзор методов неразрушающего контроля // Сибирский лесной журнал. 2025. № 1. С. 81–126.
DOI: 10.15372/SJFS20250108
EDN: …
© Усольцев В. А., 2025
При изучении биологической продуктивности лесов и разработке нормативов учета всех компонентов биомассы необходимо знать закономерности динамики плотности древесины растущих деревьев как их ключевой экологической характеристики, требующей применения неразрушающих методов. Пилодин-метод, как один из наиболее простых и доступных, востребован в селекционных программах, однако отбор по показателю плотности, получаемому пилодин-тестером, оказался эффективным не для всех древесных видов, а изменчивость плотности, объясняемая этим методом, варьирует в диапазоне от 27 до 92 %. Квалиметрия методом сопротивления бурению древесины на базе резистографа, как более чувствительного прибора по сравнению с пилодин-тестером, также нашла широкое применение в селекционных программах, но оба метода основаны на локальном зондировании, и его экстраполяция на всё дерево дает смещения оценок. Применение ригидометр-конструкции лишено недостатка, присущего двум выше упомянутым методам. Но метод оказался сравнительно трудоемким для выполнения множественных замеров. Акустический метод оценки модуля упругости и плотности древесины является чувствительным к наличию пороков древесины и позволяет снять противоречие целевых установок селекции, направленных одновременно на повышение скорости роста и плотности древесины. Радиационные методы успешно регистрируют внутрикольцевую плотность, но требуют применения дорогого оборудования. Преимущество NIR-спектроскопии (ближнего инфракрасного спектра) перед всеми остальными методами состоит в возможности оценивать химию древесины и выход целлюлозы, но она не дает прямой оценки и требует специальной калибровки. Таким образом, любая техника имеет свои ограничения, и представленный краткий её анализ может способствовать выбору варианта, наиболее пригодного для того или иного метода неразрушающего контроля.
Текст статьи
СПИСОК ЛИТЕРАТУРЫ (REFERENCES)
Азгальдов Г. Г., Райхман Э. П. О квалиметрии. М.: Изд. стандартов, 1973. 172 с. [Azgal’dov G. G., Reichman E. P. O kvalimetrii (On the qualimetry). Moscow: Publ. standards, 1973. 172 p. (in Russian)].
Алметов А. Н. Приростной безвинтовой бурав для извлечения кернов из растущих деревьев // Молодежь и охрана природы: Мат-лы респ. науч.-практ. конф. Йошкар-Ола, 1999. С. 86–87 [Almetov A. N. Prirostnoy bezvintovoy burav dlya izvlecheniya kernov iz rastushchikh derev’ev (Incremental screwless drill for extracting cores from growing trees) // Molodezh i okhrana prirody: mat-ly resp. nauch.-prakt. konf. (Youth and nature protection: Proc. resp. sci.-praсt. conf.). Ioshkar-Ola, 1999. P. 86–87 (in Russian)].
Алметов А. Н. Совершенствование конструкции бурава для извлечения кернов древесины из растущих деревьев различных пород: aвтореф. дис. …канд. техн. наук: 05.21.01. Йошкар-Ола: МарГТУ, 2001. 24 с. [Almetov A. N. Sovershenstvovanie konstruktsii burava dlya izvlecheniya kernov drevesiny iz rastushchikh derev’ev razlichnykh porod: avtoref. dis…kand. tech. nauk: 05.21.05 (Improving the design of the drill for extracting wood cores from growing trees of various species: Cand. Tech. Sci. (PhD) thesis). Ioshkar-Ola: MarGTU (Mari St. Technol. Univ.), 2001. 24 p. (in Russian)].
Берлинер М. А. Измерения влажности. М.: Энергия, 1973. 400 с. [Berliner M. A. Izmereniya vlazhnosti (Measurements of humidity). Moscow: Energiya (Energy), 1973. 400 p. (in Russian)].
Букач О. В., Мякинькова Л. Л. Микробные топливные элементы: состояние исследований и практическое применение (обзор) // Инноватика и экспертиза. 2014. Вып. 2 (13). С. 51–59 [Bukach O. V., Myakinkova L. L. Mikrobnye toplivnye elementy: sostoyanie issledovaniy i prakticheskoe primenenie (obzor) // Innovatika i ekspertiza (Innovation and Expertise). 2014. Iss. 2 (13). P. 51–59 (in Russian with English summary)].
Воейкова Т. А., Емельянова Л. К., Новикова Л. М., Шакулов Р. С., Сидорук К. В., Смирнов И. А., Ильин В. К., Солдатов П. Е., Тюрин-Кузьмин А. Ю., Смоленская Т. С., Дебабов В. Г. Интенсификация процесса получения биоэлектричества в микробных топливных элементах при использовании мутантов Shewanella oneidensis MR-1 c повышенной редуцирующей активностью // Микробиология. 2013. Т. 82. Вып. 4. С. 402–407 [Voeikova T. A., Emel’yanova L. K., Novikova L. M., Shakulov R. S., Sidoruk K. V., Debabov V. G., Smirnov I. A., Il’in V. K., Soldatov P. E., Tyurin-Kuz’min A. Y., Smolenskaya T. S. Intensifikatsiya protsessa polucheniya bioelektrichestva v mikrobnykh toplivnykh elementakh pri ispol’zovanii mutantov Shewanella oneidensis MR-1 c povyshennoy redutsiruyushchey aktivnost’yu (Intensification of bioelectricity generation in microbial fuel cells using Shewanella oneidensis MR-1 mutants with increased reducing activity) // Mikrobiologiya (Microbiology). 2013. V. 82. N. 4. P. 410–414 (in Russian with English abstract)].
ГОСТ 16483.7-71. Древесина. Методы определения влажности; введение 1973-01-01. М.: Стандартинформ, 2006. 4 с. [GOST 16483.7-71. Drevesina. Metody opredeleniya vlazhnosti; vvedenie 1973-01-01 (GOST (State branch standard) 16483.7-71. Wood. Methods for determining moisture content; introduction 1973-01-01). Moscow: Standartinform, 2006. 4 p. (in Russian)].
ГОСТ 18353-79. Контроль неразрушающий. Классификация видов и методов; введен 1980-07-01. М.: Изд-во стандартов, 1987. 12 с. [GOST 18353-79. Kontrol’ nerazrushayushchiy. Klassifikatsiya vidov i metodov; vveden 1980-07-01 (GOST (State branch standard) 18353-79. Non-destructive testing. Classification of types and methods; introduced 1980-07-01). Moscow: Standards Publ., 1987. 12 p. (in Russian)].
ГОСТ 23829-85. Контроль неразрушающий акустический. Термины и определения; введен 1987-01-01. М.: Изд-во стандартов, 1986. 16 с. [GOST 23829-85. Kontrol’ nerazrushayushchiy akusticheskiy. Terminy i opredeleniya; vveden 1987-01-01 (GOST (State branch standard) 23829-85. Non-destructive acoustic testing. Terms and definitions; introduced 1987-01-01). Moscow: Standards Publ., 1986. 16 p. (in Russian)].
ГОСТ 26266-90. Преобразователи ультразвуковые; введение 1991-01-01. М.: Изд-во стандартов, 1998. 16 с. [GOST 26266-90. Preobrazovateli ul’trazvukovye; vvedenie 1991-01-01 (GOST (State branch standard) 26266-90. Ultrasonic transducers; introduction 1991-01-01). Moscow: Standards Publ., 1998. 16 p. (in Russian)].
Гурвич А. Г. Теория биологического поля. М.: Сов. наука, 1944. 155 с. [Gurvich A. G. Teoriya biologicheskogo polya (Theory of the biological field). Moscow: Sov. nauka (Soviet science), 1944. 155 p. (in Russian)].
Дебабов В. Г. Микробный электросинтез // Биотехнология. 2017. Т. 33. № 3. С. 9–28 [Debabov V. G. Mikrobnyy elektrosintez (Microbial electrosynthesis) // Biotekhnologiya (Biotechnology). 2017. V. 33. N. 3. P. 9–28 (in Russian with English abstract)].
Еремин А. Л. К анализу моделей объединения и появления новой информации в интеллектуальных системах // Совр. пробл. физ., биофиз. и инфокоммуникац. технол. Краснодар: ЦНТИ, 2016. С. 17–27 [Eremin A. L. K analizu modeley ob’edineniya i poyavleniya novoy informatsii v intellektual’nykh sistemakh (On the analysis of models of unification and emergence of new information in intelligent systems) // Sovr. probl. fiz., biofiz. i infokommunikats. tekhnol. (Contemporary probl. phys., biophys. and infocommun. technol.). Krasnodar: TSNTI (Center Sci. Technol. Inform.), 2016. P. 17–27 (in Russian)].
Ермолов И. Н., Ермолов М. Н. Ультразвуковой контроль. М.: Эхо-Импульс, 2006. 208 с. [Ermolov I. N., Ermolov M. N. Ultrazvukovoy control (Ultrasonic testing). Moscow: Ekho-Impuls, 2006. 208 p. (in Russian)].
Зарудный И. Н. Биоэлектрический потенциал как метод определения жизнеспособности подроста древесных пород // Науч. тр. ЛЛТА. 1970. № 127. С. 35–41 [Zarudny I. N. Bioelektricheskiy potentsial kak metod opredeleniya zhiznesposobnosti podrosta drevesnykh porod (Bioelectric potential as a method for determining the viability of young trees) // Nauch. tr. LLTA (Sci. Works Leningrad For. Engineer. Acad.). 1970. N. 127. P. 35–41 (in Russian)].
Исаева Л. Н. Влажность древесины растущих деревьев в различных районах произрастания // Древесина и древесные материалы. Красноярск: Ин-т леса и древесины им. В. Н. Сукачева СО АН СССР, 1974. С. 18–28 [Isaeva L. N. Vlazhnost’ drevesiny rastushchikh derev’ev v razlichnykh rayonakh proizrastaniya (Humidity of wood of growing trees in different areas of growth) // Wood and wood materials. Krasnoyarsk: In-t lesa i drevesiny im. V. N. Sukacheva SO AN SSSR (V. N. Sukachev Inst. For. & Timber Sib. Br. USSR Acad. Sci.), 1974. P. 18–28 (in Russian)].
Каневский И. Н., Сальникова Е. Н. Неразрушающие методы контроля. Владивосток: ДВГТУ, 2007. 243 с. [Kanevskiy I. N., Sal’nikova E. N. Nerazrushayushchie metody kontrolya (Non-destructive testing methods). Vladivostok: DVGTU (Far Est St. Technol. Univ.), 2007. 243 p. (in Russian)].
Карасев В. Н. Физиология растений. Йошкар-Ола: МарГТУ, 2001. 304 с. [Karasev V. N. Fiziologiya rasteniy (Physiology of plants). Yoshkar-Ola: MaRGTU (Mari St. Technol. Univ.), 2001. 304 p. (in Russian)].
Карасев В. Н., Карасева М. А. Температурный режим деревьев сосны обыкновенной, поврежденных пожаром // Мат-лы науч. конф. по итогам науч.-иссл. раб. МарПИ за 1974 г. Секц.: лесн. хоз-во. Йошкар-Ола: МарПИ, 1975. С. 21–24 [Karasev V. N., Karaseva M. A. Temperaturny rezhim derev’ev sosny obyknovennoy, povrezhdennykh pozharom (Temperature regime of Scots pine trees damaged by fire) // Mat-ly nauch. konf. po itogam nauch.-issl. rab. MaRPI za 1974 g. Sekts.: lesn. khoz-vo (Proc. Sci. Conf. Results of Sci. Res. Work MarPI for 1974. Section: forestry // Yoshkar-Ola: MaRPI (Mari Polytech. Inst.), 1975. P. 21–24 (in Russian)].
Карасев В. Н., Карасева М. А. Эколого-физиологическая диагностика жизнеспособности деревьев хвойных пород // ИВУЗ. Лесн. журн. 2004. № 4. С. 28–33 [Karasev V. N., Karaseva M. A. Ekologo-fiziologicheskaya diagnostika zhiznesposobnosti derev’ev khvoynykh porod (Ecological and physiological diagnostics of the viability of coniferous trees) // IVUZ. Lesn. zhurn. (For. J.). 2004. N. 4. P. 28–33 (in Russian with English abstract)].
Кирлиан В. Х., Кирлиан С. Д. В мире чудесных разрядов. М.: Знание, 1964. 41 с. [Kirlian V. Kh., Kirlian S. D. V mire chudesnykh razryadov (In the world of wonderful discharges). Moscow: Znanie, 1964. 41 p. (in Russian)].
Колесникова A. A., Мазуркин П. М. Изменение свойств древесины ели по радиусу ствола // Деревообр. пром-сть. 1997. № 5. С. 23–25 [Kolesnikova A. A., Mazurkin P. M. Izmenenie svoystv drevesiny eli po radiusu stvola (Changing the properties of spruce wood along the stem radius) // Derevoobr. prom-st’ (Wood processing industry). 1997. N. 5. P. 23–25 (in Russian)].
Коловский Р. А. Биоэлектрические потенциалы древесных растений. Новосибирск: Наука. Сиб. отд-ние, 1980. 176 с. [Kolovskiy R. A. Bioelektricheskie potentsialy drevesnykh rasteniy (Bioelectric potentials of woody plants). Novosibirsk: Nauka. Sib. otd-nie (Science. Sib. Br.), 1980. 176 p. (in Russian)].
Крамер П. Д., Козловский Т. Т. Физиология древесных растений. М.: Лесн. пром-сть, 1983. 462 с. [Kramer P. D., Kozlovskiy T. T. Fiziologiya drevesnykh rasteniy (Physiology of woody plants). Moscow: Lesn. prom-st' (For. Industry), 1983. 462 p. (in Russian)].
Кулешова Т. Э., Бушлякова А. В., Галль Н. Р. Неинвазивное измерение биоэлектрических потенциалов растений // Письма в журн. тех. физ. 2019. Т. 45. Вып. 5. С. 6–8 [Kuleshova T. E., Bushlyakova A. V., Gall’ N. R. Neinvazivnoe izmerenie bioelektricheskikh potentsialov rasteniy (Non-invasive measurement of bioelectric potentials of plants) // Pis’ma v zhurn. tekh. fiz. (Lett. J. Tech. Phys.). 2019. V. 45. Iss. 5. P. 6–8 (in Russian with English abstract)].
Курило Ю. А., Григорьев А. И. Изучение электрического сопротивления древесных растений в условиях нефтяного загрязнения почвы (на примере березы повислой) // Совр. пробл. науки и образов. 2015. № 3. С. 1–8 [Kurilo Yu. A., Grigor’ev A. I. Izuchenie elektricheskogo soprotivleniya drevesnykh rasteniy v usloviyakh neftyanogo zagryazneniya pochvy (na primere berezy povisloy) (Study of electrical resistance of woody plants under conditions of oil pollution of soil (using silver birch as an example)) // Sovr. probl. nauki i obrazov. (Modern Probl. Sci. and Educat.). 2015. N. 3. P. 1–8 (in Russian with English abstract)].
Курило Ю. А., Григорьев А. И. Применение электрометрического метода для диагностики влияния нефтешлама на жизнедеятельность березы повислой // Лесоведение. 2019. № 4. С. 304–310 [Kurilo Yu. A., Grigor’ev A. I. Primenenie elektrometricheskogo metoda dlya diagnostiki vliyaniya nefteshlama na zhiznedeyatel'nost’ berezy povisloy (Application of electrometric method for diagnostics of influence of oil sludge on vital functions of silver birch) // Lesovedenie (For. Sci.). 2019. N. 4. P. 304–310 (in Russian with English abstract)].
Лавров М. Ф. Совершенствование метода оценки качества древесины лиственницы, произрастающей в климатических условиях Якутии: автореф. дис… канд. тех. наук: 05.21.05. Екатеринбург: УГЛТУ, 2015. 15 с. [Lavrov M. F. Sovershenstvovanie metoda otsenki kachestva drevesiny listvennitsy, proizrastayushchey v klimaticheskikh usloviyakh Yakutii: avtoref. dis…kand. tech. nauk: 05.21.05 (Improving the method for assessing the quality of larch wood growing in the climatic conditions of Yakutia: Cand. Tech. Sci. (PhD) thesis: Wood Sci., Technol. & Equipment for Wood Processing). Yekaterinburg: UGLTU (Ural. St. For. Engineer. Univ.), 2015. 15 p. (in Russian)].
Ланге Ю. В. Акустические низкочастотные методы и средства неразрушающего контроля многослойных конструкций. М.: Машиностроение, 1991. 272 с. [Lange Yu. V. Akusticheskie nizkochastotnye metody i sredstva nerazrushayushego kontrolya mnogosloynykh konstruktsiy (Acoustic low-frequency methods and means of non-destructive testing of multilayer structures). Moscow: Mashinostroenie, 1991. 272 p. (in Russian)].
Ланге Ю. В., Воронков В. А. Контроль неразрушающий акустический. Термины и определения. Справочник. М.: Авт. изд., 2003. 120 с. [Lange Yu. V., Voronkov V. A. Kontrol’ nerazrushayushchiy akusticheskiy. Terminy i opredeleniya. Spravochnik (Non-destructive acoustic control. Terms and definitions. Guide). Moscow: Avt. izd. (Author Publ.), 2003. 120 p. (in Russian)].
Лехницкий С. Г. Теория упругости анизотропного тела. М.: Наука, 1977. 416 с. [Lekhnitskiy S. G. Teoriya uprugosti anizotropnogo tela (Theory of elasticity of an anisotropic body). Moscow: Nauka (Science), 1977. 416 p. (in Russian)].
Макаренко А. А. Срастание корневых систем сосны в сухих борах Северного Казахстана // Агробиология. 1962. № 6. С. 623–624 [Makarenko A. A. Srastanie kornevykh sistem sosny v sukhikh borakh Severnogo Kazakhstana (Fusion of pine root systems in dry pine forests of Northern Kazakhstan) // Agrobiologiya. 1962. N. 6. P. 623–624 (in Russian)].
Манкузо С., Виола А. О чем думают растения: тайная жизнь, скрытая от посторонних глаз. М.: Эксмо, 2019. 208 с. [Mankuso S., Viola A. O chem dumayut rasteniya: taynaya zhizn’, skrytaya ot postoronnikh glaz (What plants think: The secret life hidden from prying eyes). Moscow: Eksmo, 2013. 208 p. (in Russian)].
Марченко И. С. Биополе лесных экосистем. Брянск: Придесенье, 1995. 188 с. [Marchenko I. S. Biopole lesnykh ekosistem (Biological field of forest ecosystems). Bryansk: Pridesenie, 1995. 188 p. (in Russian)].
Медведев С. С. Электpофизиология pастений. СПб.: СПбГУ, 1997. 122 с. [Medvedev S. S. Elektpofiziologiya rasteniy (Electrophysiology of plants). St. Petersburg: SPbGU (St. Petersburg St. Univ.), 1997. 122 p. (in Russian)].
Мелехов В. И., Бабич Н. А., Корчагов С. А. Качество древесины сосны в культурах. Архангельск: АГТУ, 2003. 110 с. [Melekhov V. I., Babich N. A., Korchagov S. A. Kachestvo drevesiny sosny v kulturakh (The quality of pine wood in crops). Arkhangelsk: AGTU (Arkhangelsk St. Technol. Univ.), 2003. 110 p. (in Russian)].
Молчанов A. A. Продуктивность органической массы в лесах различных зон. М.: Наука, 1971. 275 с. [Molchanov A. A. Produktivnost’ organicheskoy massy v lesakh razlichnykh zon (Productivity of organic matter in forests of different zones). Moscow: Nauka (Science), 1971. 275 p. (in Russian)].
Никишов В. Д. Исследование механических свойств древесины неразрушающими методами: Автореф. дис. …канд. техн. наук: 05.21.05. М.: МЛТИ, 1966. 24 с. [Nikishov V. D. Issledovanie mekhanicheskikh svoystv drevesiny nerazrushayushchimi metodami: avtoref. dis. … kand. tech. nauk: 05.21.05 (Study of mechanical properties of wood by non-destructive methods: Cand. Tech. Sci. (PhD) thesis: Wood Sci., Technol. & Equipment for Wood Processing). Moscow: MLTI (Moscow For. Engineer. Inst.), 1966. 24 p. (in Russian)].
Перелыгин Л. М. Древесиноведение. М.: Лесн. пром-сть, 1969. 318 с. [Perelygin L. M. Drevesinovedenie (Wood science). Moscow: Lesn. prom-st’ (For. Industry), 1969. 318 p. (in Russian)].
Полубояринов О. И. Влияние лесохозяйственных мероприятий на качество древесины. Л.: ЛЛТА, 1974. 96 с. [Poluboyarinov O. I. Vliyanie lesokhozyaystvennykh meropriyatiy na kachestvo drevesivy (Influence of forest management on the wood quality). Leningrad: LLTA (Leningrad For. Engineer. Acad.), 1974. 96 p. (in Russian)].
Полубояринов О. И. Плотность древесины. М.: Лесн. пром-сть, 1976а. 160 с. [Poluboyarinov O. I. Plotnost’ drevesiny (Wood density). M.: Lesn. prom-st’, 1976a. 160 p. (in Russian)].
Полубояринов О. И. Квалиметрия древесного сырья в процессе лесовыращивания: автореф. дис… д-ра с.-х. наук: 06.03.03. Л.: ЛЛТА, 1976б [Poluboyarinov O. I. Kvalimetriya drevesnogo stvola v protsesse lesovyrashchivaniya: avtoref. dis…d-ra s.-kh. nauk: 06.03.03 (Qualimetry of wood raw materials in the process of forest growing: Dr. Agr. Sci. (DSc) Thesis: For. Sci. & Silviculture). Leningrad: LLTA (Leningrad For. Engineer. Acad.), 1976b. 46 p. (in Russian)].
Полубояринов О. И., Некрасова Г. Н., Фёдоров Р. Б. О взаимосвязи влажности и плотности древесины растущих деревьев // ИВУЗ. Лесн. журн. 1982. № 2. С. 7–11 [Poluboyarinov O. I., Nekrasova G. N., Fedorov R. B. O vzaimosvyazi vlazhnosti i plotnosti rastushikh derev’ev (On the relationship between wood humidity and density of growing trees) // IVUZ. Lesn. zhurn. (Fr. J.). 1982. N. 2. P. 7–11 (in Russian with English abstract)].
Радж Б., Раджендран В., Паланичами П. Применение ультразвука. М.: Техносфера, 2006. 576 с. [Radzh B., Randzhendran B., Palanichami P. Primenenie ultrazvuka (Application of ultrasound). Moscow: Tekhnosfera, 2006. 576 p. (in Russian)].
Рахтеенко И. Н. Рост и взаимодействие корневых систем древесных растений. Минск: АН БССР, 1963. 254 с. [Rakhteenko I. N. Rost i vzaimodeystvie kornevykh sistem drevesnykh rasteniy (Growth and interaction of root systems of woody plants). Minsk: AN BSSR (Acad. Sci. Belarus Sov. Soc. Rep.), 1963. 254 p. (in Russian)].
Роне В. М. Изменчивость плотности древесины и длины трахеид в потомстве ели обыкновенной // Лесоведение. 1970. № 5. С. 78–82 [Rone V. M. Izmenchivost’ plotnosti drevesiny i dliny trakheid v potomstve eli obyknovennoy (Variability of wood density and length of tracheids in the progeny of common spruce) // Lesovedenie (For. Sci.). 1970. N. 5. P. 78–82 (in Russian with English abstract)].
Савельева Л. С. Срастание корневых систем древесных пород. М.: Лесн. пром-сть, 1969. 72 с. [Savel’eva L. S. Srastanie kornevykh sistem drevesnykh porod (Fusion of root systems of tree species). Moscow: Lesn. prom-st’ (For. Industry), 1969. 72 p. (in Russian)].
Симоненко А. А. Методы и средства таможенного контроля плотности древесины: автореф. дис. ... канд. техн. наук: 05.11.13. СПб.: Нац. минерально-сырьевой ун-т «Горный», 2014. 20 с. [Simonenko A. A. Metody i sredstva tamozhennogo kontrolya plotnosti drevesiny: avtoref. dis. ... cand. tech. nauk: 05.11.13 (Methods and means of customs control of wood density: Cand. Tech. Sci. (PhD) thesis: Devices and methods for monitoring the nat. environ., substances, materials and products). St. Petersburg: Nat. Mineral Res. Univ. «Gorny», 2014. 20 p. (in Russian)].
Уголев Б. Н. Испытания древесины и древесных материалов. М.: Лесн. пром-сть, 1965. 251 с. [Ugolev B. N. Ispytaniya drevesiny i drevesnykh materialov (Testing of wood and wood materials). Moscow: Lesn. prom-st’ (For. Industry), 1965. 251 p. (in Russian)].
Усольцев В. А. Рост и структура фитомассы древостоев. Новосибирск: Наука. Сиб. отд-ние, 1988. 253 с. [Usol’tsev V. A. Rost i struktura fitomassy drevostoev (Growth and structure of phytomass of tree stands). Novosibirsk: Nauka. Sib. otd-nie (Science. Sib. Br.), 1988. 253 p. (in Russian)].
Усольцев В. А., Крепкий И. С. Закономерности соотношений надземной и подземной фитомассы в сосняках Кустанайской области // Вестн. с.-х. науки Казахстана. 1984. № 3. С. 73–79 [Usol’tsev V. A., Krepkiy I. S. Zakonomernosti sootnosheniy nadzemnoy i podzemnoy fitomassy v sosnyakakh Kustanayskoy oblasti (Regularities of the ratio of aboveground and underground phytomass in pine forests of the Kostanay Oblast) // Vestn. s.-kh. nauki Kazakhstana (Bull. Agr. Sci. Kazakhastan). 1984. N. 3. P. 73–79 (in Russian)].
Усольцев В. А., Крепкий И. С. Соотношения надземных и подземных фракций фитомассы у сосны Аман-Карагайского бора // Лесовосстановление в Казахстане. Алма-Ата: Кайнар, 1986. С. 191–199 [Usol’tsev V. A., Krepkiy I. S. Sootnosheniya nadzemnykh i podzemnykh fraktsiy fitomassy u sosny Aman-Karagayskogo bora (Ratios of aboveground and underground fractions of phytomass in pine of the Aman-Karagay pine forest) // Lesovosstanovlenie v Kazakhstane (Forest restoration in Kazakhstan). Alma-Ata: Kaynar, 1986. P. 191–199 (in Russian)].
Усольцев В. А., Крепкий И. С. Регрессионный анализ вертикальнофракционного распределения массы корней в сосняках Аман-Карагайского бора // Экология. 1994. № 2. С. 21–33 [Usol’tsev V. A., Krepkiy I. S. Regressionny analiz vertikal'nofraktsionnogo raspredeleniya massy korney v sosnyakakh Aman-Karagayskogo bora (Regression analysis of vertical fractional distribution of root mass in pine forests of Aman-Karagay pine forest) // Ekologiya (Ecology). 1994. N. 2. P. 21–33 (in Russian with English abstract)].
Успенский В. В. Изменчивость плотности древесины сосны и ее значение в весовой таксации // ИВУЗ. Лесн. журн. 1980. № 6. С. 9–12 [Uspenskiy V. V. Izmenchivost’ plotnosti drevesiny sosny i ee znachenie v vesovoy taksatsii (Variability of wood density and its importance in the weight tree survey) // IVUZ. Lesn. zhurn. (For. J.). 1980. N. 6. P. 9–12 (in Russian with English abstract)].
Федюков В. И. Научные основы всеобщего обеспечения качества и сертификации лесоматериалов спецназначения: автореф. дис. ... д-ра тех. наук: 08.00.20. М.: Всерос. НИИ сертиф., 1998. 39 с. [Fedyukov V. I. Nauchnye osnovy vseobshchego obespecheniya kachestva i sertifikatsii lesomaterialov spetsnaznacheniya: avtoref. dis. ... d-ra tech. nauk: 08.00.20 (Scientific basis for universal quality assurance and certification of special purpose timber: Dr. Tech. Sci. (DSc) thesis: Econ. Manag. Nat. Econ.). Moscow: Vseros. NII sertif. (All-Rus. Sci. Res. Inst. Certification), 1998. 39 p. (in Russian)].
Федюков В. И., Салдаева Е. Ю., Цветкова Е. М. Комплексная оценка технического качества древесины на корню // Лесн. вестн. 2016. № 4. С. 48–51 [Fedyukov V. I., Saldaeva E. Yu., Tsvetkova E. M. Kompleksnaya otsenka tekhnicheskogo kachestva drevesiny na kornyu (Comprehensive assessment of the technical quality of standing tree wood) // Lesn. vestn. (For. Bull.). 2016. N. 4. P. 48–51 (in Russian with English abstract)].
Ходоров Б. И. Проблема возбудимости. Л.: Медицина, 1969. 302 с. [Khodorov B. I. Problema vozbudimosti (The problem of excitability). Leningrad: Meditsina (Medicine), 1969. 302 p. (in Russian)].
Шарапов Е. С., Чернов В. Ю. Сравнительный анализ способов определения плотности древесины с помощью рентгеновского излучения и устройства для измерения сопротивления сверлению // Лесн. вестн. 2014. № 2. С. 89–95 [Sharapov E. S., Chernov V. Yu. Sravnitelny analiz sposobov opredeleniya plotnosti drevesiny s pomoshchyu rentgenovskogo izlucheniya i ustroystva dlya izmereniya soprotivleniya sverleniyu (Comparative analysis of methods for determining wood density using x-ray radiation and devices for measuring drilling resistance) // Lesn. vestn. (For. Bull.). 2014. N. 2. P. 89–95 (in Russian with English abstract)].
Шиятов С. Г., Ваганов Е. А., Кирдянов А. В., Круглов В. Б., Мазепа В. С., Наурзбаев М. М., Хантемиров Р. М. Методы дендрохронологии. Ч. 1. Основы дендрохронологии. Сбор и получение древесно-кольцевой информации. Красноярск: КГУ, 2000. 80 с. [Shiyatov S. G., Vaganov E. A., Kirdyanov A. V., Kruglov V. B., Mazepa V. S., Naurzbaev M. M., Khantemirov R. M. Metody dendrokhronologii. Ch. I. Osnovy dendrokhronologii. Sbor i poluchenie drevesno-koltsevoy informatsii (Methods of dendrochronology. Part 1. Basics of dendrochronology. Collecting and receiving tree-ring information). Krasnoyarsk: KGU (Krasnoyarsk St. Univ.), 2000. 80 p. (in Russian)].
Якушев Б. И. Электрометрический способ оценки массы подземных органов растений // Докл. АН БССР. 1972. Т. 16. № 9. С. 848–850 [Yakushev B. I. Elektrometricheskiy sposob otsenki massy podzemnykh organov rasteniy (Electrometric method for assessing the mass of underground plant organs) // Dokl. AN BSSR (Proc. Acad. Sci. Belarus Sov. Soc. Rep.). 1972. V. 16. N. 9. P. 848–850 (in Russian)].
Якушев Б. И. Исследование растений и почв: экол.-физиол. методы. Минск: Наука и техника, 1988. 69 с. [Yakushev B. I. Issledovanie rasteniy i pochv: ekol.-fiziol. metody (Study of plants and soils: ecol.-physiol. Methods). Minsk: Nauka и tekhnika (Sci. & Technol.), 1988. 69 p. (in Russian)].
Achim A., Paradis N., Salenikovich A., Power H. Using acoustic tools to improve the efficiency of the forestry wood chain in eastern Canada // The Future of Quality Control for Wood & Wood Products’, 4-7 May 2010, Edinburgh. The Final Conf. COST Action E53, 2010. 10 p.
Achim A., Paradis N., Carter P., Hernández R. E. Using acoustic sensors to improve the efficiency of the forest value chain in Canada: A case study with laminated veneer lumber // Sensors. 2011. V. 11. Iss. 6. P. 5716–5728.
Acuna M., Murphy G. Geospatial and within tree variation of wood density and spiral grain in Douglas fir // For. Prod. J. 2006. V. 56. N. 4. P. 81–85.
Adams T., Aitken S., Balduman L., Schermann N. Pilodyn repeatability study, in Pacific Northwest // Tree Improvement Res. Coop. Ann. Rep., 1992-1993. Corvallis, OR: Oregon St. Univ., 1993. P. 29–35.
Aguiar A., Almeida M. H., Borralho N. Genetic control of growth, wood density and stem characteristics of Pinus pinaster in Portugal // Silva Lusitana. 2003. V. 11. Iss. 2. P. 131–139.
Aichholzer A., Schuberth C., Mayer H., Arthaber H. Microwave testing of moist and oven-dry wood to evaluate grain angle, density, moisture content and the dielectric constant of spruce from 8 GHz to 12 GHz // Europ. J. Wood Prod. 2018. V. 76. P. 89–103.
Al Hagrey S. A. Geophysical imaging of root-zone, tree trunk, and moisture heterogeneity // J. Exp. Bot. 2007. V. 58. Iss. 4. P. 839–854.
Allison R. B. Development of bioacoustic nondestructive testing instruments for early detection of bark beetle infestation // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 264–269.
Amishev D., Murphy G. In-forest assessment of veneer grade Douglas fir logs based on acoustic measurement of wood stiffness // For. Prod. J. 2008. V. 58. N. 11. P. 42–47.
Andrews M. K. Wood quality measurement — son et lumiere // N. Z. J. For. 2002. V. 47. P. 19–21.
Andrews M. K. Which acoustic speed? // Proc. 13th Int. Symp. Nondestructive Testing of Wood / F. C. Beall (Ed.). Madison, Wisconsin: For. Prod. Soc., 2003. P. 159–165.
Apiolaza L. A. Very early selection for solid wood quality: Screening for early winners // Ann. For. Sci. 2009. V. 66. P. 601.
Armstrong J. P., Skaar C., de Zeeuw C. The effect of specific gravity on several mechanical properties of some world woods // Wood Sci. Tech. 1984. V. 18. N. 2. P. 137–146.
Aslezaeim N. Effect of cultural intensity and planting density on wood properties of loblolly pine (Pinus taeda L.). PhD thesis. Mississippi St. Univ., 2016. 160 p.
Auty D., Achim A. The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands // Forestry. 2008. V. 81. Iss. 4. P. 475–487.
Baar J., Tippner J., Gryc V. The influence of wood density on longitudinal wave velocity determined by the ultrasound method in comparison to the resonance longitudinal method // Europ. J. Wood Prod. 2012. V. 70. N. 5. P. 767–769.
Baquir M., Naqvi K. H., Paras A., Malik D., Paras A. A Step towards soil and wastewater treatment along with green power generation using plant microbial fuel cell: A mini review // J. Emerg. Technol. Innov. Res. 2019. V. 6. Iss. 6. P. 32–34.
Bieker D., Rust S. Electric resistivity tomography shows radial variation of electrolytes in Quercus robur // Can. J. For. Res. 2010. V. 40. N. 6. P. 1189–1193.
Blakemore P. The use of hand-held electrical moisture meters with commercially important Australian hardwoods. Part 1. Executive summary, methods, results, conclusion & recommendations. Forest & Wood Prod. Res. & Develop. Corp., 2003. 89 p.
Böhm W. Methods of studying root systems. New York: Springer Verlag, 1979. 188 p.
Bolte A., Hertel D., Ammer Ch., Schmid I., Nörr R., Kuhr M., Redde N. Freilandmethoden zur Untersuchung von Baumwurzeln // Forstarchiv. 2003. Bd. 74. S. 240-262.
Bouffier L., Charlot C., Raffin A., Rozenberg P., Kremer A. Can wood density be efficiently selected at early stage in maritime pine (Pinus pinaster Ait.)? // Ann. For. Sci. 2008. V. 65. Iss. 1. P. 106.
Brazee N. J., Marra R. E., Göcke L., Van Wassenaer P. Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography // Forestry. 2011. V. 84. Iss. 1. P. 33–39.
Brazier J. D., Mobbs I. D. The influence of planting distance on structural wood yields of unthinned Sitka spruce // Forestry. 1993. V. 66. Iss. 4. P. 333–352.
Bucur V. Acoustics of wood. 2nd ed. New York: Springer-Verlag, 2006. 393 p.
Bucur V., Feeney F. Attenuation of ultrasound in solid wood // Ultrasonics. 1992. V. 30. N. 2. P. 76–81.
Butler M. A., Dahlen J., Eberhardt T. L., Montes C., Antony F., Daniels R. F. Acoustic evaluation of loblolly pine tree- and lumber-length logs allows for segregation of lumber modulus of elasticity, not for modulus of rupture // Ann. For. Sci. 2017. V. 74. Iss. 1. Article number 20. 15 p.
Butnor J. R., Doolittle J. A., Kress L., Cohen S., Johnsen K. H. Use of ground-penetrating radar to study tree roots in the southeastern United States // Tree Physiol. 2001. V. 21. Iss. 17. P. 1269–1278.
Calderón L. Estudio sobre la influencia del contenido de humedad de la madera en ensayos no destructivos para Pinus nigra Arn., Pinus radiata D. Don y Pinus sylvestris L. // Proyecto Fin de Carrera / Trabajo Fin de Grado, E. U. I. T. Forestal (UPM). Madrid, 2012. 109 p.
Carter P. Acoustic technology – enhanced tools for research and operations // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 58–70.
Cavalcanti N. M. O., Bertoldo C., Ferreira J. P. O., Gonçalves R. Physical and mechanical characterization of roots // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 252–256.
Ceraldi C., Mormone V., Ermolli E. R. Resistographic inspection of ancient timber structures for the evaluation of mechanical characteristics // Mater. Struct. 2001. V. 34. P. 59–64.
Chan J. M., Walker J. C., Raymond C. A. Effects of moisture content and temperature on acoustic velocity and dynamic MOE of radiata pine sapwood boards // Wood Sci. Technol. 2011. V. 45. Iss. 4. P. 609–626.
Chantre G., Rozenberg P. Can drill resistance profiles (Resistograph) lead to within-profile and within-ring density parameters in Douglas-fir wood? // Proc. CTIA – IUFRO Int. wood quality workshop: timber management toward wood quality and end-product value / Zhang S. Y., Gosselin R., and Chauret G. (Eds.). Sainte-Foy, Quebec, Canada: Forintek Canada Corp., 1997. P. 41–47.
Chantre G., Sutter-Barrot E., Gouma R., Bouvet A. De l’intérêt de l’utilisation du Pilodyn dans l’étude de la qualité du bois: application à l’épicéa commun et à l’épicéa de Sitka // Ann. Res. For. AFOCEL, 1992. P. 145–177.
Charette P., Lu P., Tang F., Zhang S. Y. Evaluation of the resistograph for wood density estimate and the use of multi-trait selection index for genetic selection in jack pine // Proc. 31st Meeting Can. For. Gen. Ass.: Adaptation and Conservation in the Era of Forest Tree Genomics and Environmental Change, Quebec City, Quebec, 25–28 August 2008 / J. D. Simpson (Ed.). Fredericton, N.B.: Nat. Res. Canada, Can. For. Serv., 2008. P. 1–88.
Chauhan S., Walker J., Chauhan S. Variations in acoustic velocity and density with age, and their interrelationships in radiata pine // For. Ecol. Manag. 2006. V. 229. Iss. 1–3. P. 388–394.
Chave J., Andalo C., Brown S., Cairns M. A., Chambers J. Q., Eamus D., Fölster H., Fromard F., Higuchi N., Kira T., Lescure J.-P., Nelson B., Ogawa H., Puig H., Riéra B., Yamakura T. Tree allometry and improved estimation of carbon stocks and balance in tropical forests // Oecologia. 2005. V. 145. Iss. 1. P. 87–99.
Chen Z.-Q., Karlsson B., Lundqvist S.-O., Gil M. R. G., Olsson L., Wu H. X. Estimating solid wood properties using Pilodyn and acoustic velocity on standing trees of Norway spruce // Ann. For. Sci. 2015. V. 72. Iss. 4. P. 499–508.
Cherelli S., Ballarin A. Nonconventional approach to evaluate the quality of heartwood and sapwood // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 517.
Chloupek O. The relationship between electric capacitance and some other parameters of plant roots // Biol. Plant. 1972. V. 14. N. 3. P. 227–230.
Chloupek O. Die Bewertung des Wurzelsystems von Senfpflanzen auf Grund der dielektrischen Eigenschaften und mit Rücksicht auf den Endertrag // Biol. Plant. 1976. V. 18. N. 1. P. 44–49.
Chloupek O. Evaluation of the size of a plant’s root system using its electrical capacitance // Plant and Soil. 1977. V. 48. N. 2. P. 525–532.
Cockrell R. A. A study of the screw-holding properties of wood // Bull. New York St. Coll. For. Syracuse. N. 44. N. Y. Tech. Publ., 1933. 27 p.
Costa C. P., Gonçalves R., Bertoldo C., Cavalcanti N. M. O., Reis M. N., Garcia G. H. Comparison among velocity of ultrasound wave propagation in roots, branches and stem // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 520–524.
Cown D. J. Comparison of the Pilodyn and torsiometer methods for the rapid assessment of wood density in living trees // N. Z. J. For. Sci. 1978. V. 8. N. 3. P. 384–391.
Cown D. J. Use of the Pilodyn wood tester for estimating wood density in standing trees. Influence of site and tree age // N. Z. For. Serv., For. Res. Inst. 1982. V. 13. 9 p.
Dahlen J., Diaz I., Schimleck L., Jones P. D. Near-infrared spectroscopy prediction of southern pine No. 2 lumber physical and mechanical properties // Wood Sci. Technol. 2017. V. 51. P. 309–322.
Dahmen S., Ketata H., Ben Ghozlen M. H., Hosten B. Elastic constants measurement of anisotropic olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave // Ultrasonics. 2010. V. 50. N. 4. P. 502–507.
Davidson R. W. Effect of temperature on the resistance of wood // For. Prod. J. 1958. V. 8. N. 5. P. 160.
De Palma A., Pareti G. Between radical change and conservation: the investigation of bioelectric phenomena in Germany in the late nineteenth century // Nuncius. 2010. V. 25. Iss. 1. P. 69–100.
Divos E., Szalai L. Tree evaluation by acoustic tomography // Proc. 13th Int. Symp. Nondestructive Testing of Wood, 19–21 Aug. 2002, Berkeley, CA, 2002. P. 251–256.
Dobbertin M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review // Europ. J. For. Res. 2005. V. 124. Iss. 4. P. 319–333.
Donegan E., Sola G., Cheng Z., Birigazzi L., Gamarra J. G.-P., Henry M., Vieilledent G., Chiti T. GlobAllomeTree’s wood density database // FAO UNO Tech. Rep. Rome, Italy, 2014. 29 p.
Dündar T., Akkılıç H., Büyüksarı Ü. Effects of the clone differences and initial plant density on the acoustic measurements in hybrid poplar trees // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 386–394.
Eckard J. T. Rapid screening for solid wood quality traits in clones of loblolly pine (Pinus taeda L.) by indirect measurements. MSc Thesis, North Carolina St. Univ., Raleigh, NC, USA, 2007. 153 p.
Eckard J. T., Isik F., Bullock B., Li B., Gumpertz M. Selection efficiency for solid wood traits in Pinus taeda using time-of-flight acoustic and micro-drill resistance methods // For. Sci. 2010. V. 56. Iss. 3. P. 233–241.
El-Hadad A., Brodie G. I., Ahmed B. S. The effect of wood condition on sound wave propagation // Open J. Acoustics. 2018. V. 8. N. 3. P. 37–51.
Essien C., Cheng Q., Via B. K., Loewenstein E. F., Wang X. An acoustics operations study for loblolly pine (Pinus taeda) standing saw timber with different thinning history // Bioresources. 2016. V. 11. Iss. 3. P. 7512–7521.
Essien C., Via B., Gallagher T., McDonald T., Eckhardt L. G. Applying discriminate analysis and acoustic tool to assign loblolly pine families into susceptibility classes // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 504–511.
Evans R., Ilic J. Rapid prediction of wood stiffness from microfibril angle and density // For. Prod. J. 2001. V. 51. Iss. 3. P. 53–57.
Farrell R., Innes, T., Nolan G. Sorting plantation Eucalyptus nitens logs with acoustic wave velocity. Project No PN07.3018. Victoria, Australia: For. Wood Prod. Austral. Ltd., 2008. 27 р.
Fernández J. E., Cuevas M. V. Irrigation scheduling from stem diameter variations: A review // Agr. For. Meteorol. 2010. V. 150. Iss. 2. P. 135–151.
Forsén H., Tarvainen V. Accuracy and functionality of hand held wood moisture content meters. Espoo, Tech. Res. Centre Finland, VTT Publ., 2000. V. 420. 79 p.
Fromm J., Lautner S. Electrical signals and their physiological significance in plants // Plant Cell Environ. 2007. V. 30. N. 3. P. 249–257.
Fukatsu E., Tamura A., Takahashi M., Fukuda Y., Nakada R., Kubota M., Kurinobu S. Efficiency of the indirect selection and the evaluation of the genotype by environment interaction using Pilodyn for the genetic improvement of wood density in Cryptomeria japonica // J. For. Res. 2011. V. 16. Iss. 2. P. 128–135.
Fundova I. In situ wood quality assessment in interior spruce. Thesis submitted in partial fulfillment of the requirements for the degree of MSc in the Faculty of graduate studies (Forestry), The University of British Columbia, Vancouver, 2012. 80 p.
Fundova I., Funda T., Wu H. X. Non-destructive wood density assessment of Scots pine (Pinus sylvestris L.) using Resistograph and Pilodyn // PLoSONE. 2018. V. 13. N. 9. Article number 204518.
Gagliano M., Mancuso S., Robert D. Towards understanding plant bioacoustics // Trends Plant Sci. 2012. V. 17. N. 6. P. 323–325.
Gantz C. H. Evaluating efficiency of the Resistograph to estimate genetic parameters for wood density in two softwood and two hardwood species. MSc Thesis, North Carolina St. Univ., 2002. 78 p.
Gao S., Wang X., Wiemann M. C., Brashaw B. K., Ross R. J., Wang L. A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees // Ann. For. Sci. 2017. V. 74. Iss. 2. Article number 27.
Gapare W. J., Baltunis B. S., Ivković M., Wu H. X. Genetic correlations among juvenile wood quality and growth traits and implications for selection strategy in Pinus radiata D. Don. // Ann. For. Sci. 2009. V. 66. N. 6. P. 606–606.
Garcia G., Gonçalves R., Ruy M., Lorensani R. G. M. Acoustic characterization of wood from tree branches // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 513.
Garzon P. C., Keijzer F. Plants: Adaptive behavior, root-brains and minimal cognition // Adaptive Behavior. 2011. V. 19. Iss. 3. P. 155–171.
Gibert L., Scott G., Ferràndez-Cañadell C. Evaluation of the Olduvai subchron in the Orce ravine (SE Spain). Implications for Plio-Pleistocene mammal biostratigraphy and the age of Orce archeological sites // Quatern. Sci. Rev. 2006. V. 25. Iss. 5–6. P. 507–525
Gillis C. M., Stephens W. C., Peralta P. N. Moisture meter correction factors for four Brazilian wood species // For. Prod. J. 2001. V. 51. Iss. 4. P. 83–86.
Glass S. V., Zelinka S. L. Moisture relations and physical properties of wood // Wood handbook: wood as an engineering material. Chapter 4. Centennial Ed. Gen. Tech. Rep. FPL-GTR-190. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2010. P. 4.1–4.19.
Gonçalves R., Batista F. A. F., Lorensani R. G. M. Selecting eucalyptus clones using ultrasound test on standing trees // For. Prod. J. 2013. V. 63. Iss. 3–4. P. 112–118.
Gora E. M., Yanoviak S. P. Electrical properties of temperate forest trees: a review and quantitative comparison with vines // Can. J. For. Res. 2015. V. 45. N. 3. P. 236–245.
Görlacher R. Zerstörungsfreie Prüfung von Holz: Ein «in situ»-Verfahren zur Bestimmung der Rohdichte // Holz als Roh- und Werkstoff. 1987. V. 45. P. 273–278.
Görlacher R., Hättich R. Untersuchung von altern Konstruktionsholz: Die Bohrwiderstandsmessung // Bauen mit Holz. 1990. V. 92. P. 455–459.
Gough G., Barnes R. D. A comparison of three methods of wood density assessment in a Pinus elliottii progeny test // South Afr. For. J. 1984. V. 128. N. 1. P. 22–25.
Grabianowski M., Manley B., Walker J. C. F. Acoustic measurements on standing trees, logs and green lumber // Wood Sci. Technol. 2006. V. 40. Iss. 3. P. 205–216.
Grammel R. Zusammenhänge zwischen Wachstumsbedingungen und holztechnologischen Eigenschaften der Fichte // Forstwissenschaftliches Centralblatt. 1990. V. 109. P. 119–129.
Greaves B. L., Borralho N. M. G., Raymond C. A., Farrington A. Use of a Pilodyn for the indirect selection of basic density in Eucalyptus nitens // Can. J. For. Res. 1996. V. 26. N. 9. P. 1643–1650.
Guź M. M. Kompleksowa metoda badań systemów korzeniowych roślin drzewiastych // Acta Agr. Silv. Ser. Silv. 1990. V. 29. P. 17–29.
Gwaze D., Stevenson A. Genetic variation of wood density and its relationship with drill resistance in shortleaf pine // South J. Appl. For. 2008. V. 32. Iss. 3. P. 130–133.
Hanhijärvi A., Ranta-Maunus A. Development of strength grading of timber using combined measurement techniques. Rep. Combigrade-project – Phase 2. Tech. Rep. VTT Publ. 686, VTT Tech. Res. Centre Finland, Vuorimiehentie, Finland, 2008. 55 p.
Hannrup B., Cahalan C., Chantre G., Grabner M., Karlsson B., Bayon I. L., Jones G. L., Müller U., Pereira H., Rodrigues J. C., Rosner S., Rozenberg P., Wilhelmsson L.,Wimmer R. Genetic parameters of growth and wood quality traits in Picea abies // Scand. J. For. Res. 2004. V. 19. Iss. 1. P. 14–29.
Hans G., Redman D., Leblon B., Nader J., La Rocque A. Determination of log moisture content using early-time ground penetrating radar signal // Wood Mater. Sci. Eng. 2015. V. 10. Iss. 1. P. 112–129.
Hansen C. P. Application of the Pilodyn in forest tree improvement. DFSC Ser. Tech. Notes. TN 55. Danida For. Seed Centre, Humlebaek, Denmark, 2000. 11 p.
Hapla F. Radiographisch-densitometrische Holzeigenschaftsuntersuchungen an Douglasien aus unterschiedlich durchforsteten Versuchsflächen // Holz als Roh- und Werkstoff. 1985. V. 43. P. 9–15.
Hasegawa M., Takata M., Matsumura J., Oda K. Effect of wood properties on within-tree variation in ultrasonic wave velocity in softwood // Ultrasonics. 2011. V. 51. N. 3. P. 296–302.
Hassan K. T., Horaacek P., Tippner J. Evaluation of stiffness and strength of Scots pine wood using resonance frequency and ultrasonic techniques // BioRes. 2013. V. 8. Iss. 2. P. 1634–1645.
Hayes M., Chen J. A portable stress wave measurement system for timber inspection // Proc. Electronics Conf. (ENZCON). Hamilton, N. Z., 2003. P. 1–6.
Herman M., Dutilleul P., Avella-Shaw T. Growth rate effects on temporal trajectories of ring width, wood density, and mean tracheid length in norway spruce (Рicea abies (L.) Karst.) // Wood Fiber Sci. 1998. V. 30. Iss. 1. P. 6–17.
Hoffmeyer P. The Pilodyn instrument as a non-destructive tester of the shock resistance of wood // Proc. 4th Symp. Non-Destructive Testing of Wood. Pullman, Washington, USA, 1978. Р. 47–66.
Hong Z., Fries A., Lundqvist S.-O., Gull B. A., Wu H. X. Measuring stiffness using acoustic tool for Scots pine breeding selection // Scand. J. For. Res. 2015. V. 30. Iss. 4. P. 363–372.
Hruska L., Čermak J., Šustek S. Mapping tree root systems with ground-penetrating radar // Tree Physiol. 1999. V. 19. Iss. 2. P. 125–130.
Huang C.-L., Lindstrom H., Nakada R., Ralston J. Cell wall structure and wood properties determined by acoustics – a selective review // Holz Roh-Werkst. 2003. V. 61. N. 5. P. 321–335.
Ikeda K., Arima T. Quality evaluation of standing trees by a stress-wave propagation method and its application II. Evaluation of sugi stands and application to production of sugi structural square sawn timber // Mokuzai Gakaishi. 2000. V. 46. P. 189–196.
Ikeda K., Suzuki Y., Sugiyama A., Hoshikawa T. Estimation of the moisture content of Japanese cedar (Cryptomeria japonica)large diameter logs by measuring relative permittivity and phase attenuation of low frequency (52 Mhz) electromagnetic wave // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 496–503.
Ishiguri F., Matsui R., Iizuka K., Yokota S., Yoshizawa N. Prediction of the mechanical properties of lumber by stress-wave velocity and Pilodyn penetration of 36-year-old Japanese larch trees // Holz Roh. Werkst. 2008. V. 66. Iss. 4. P. 275–280.
Isik F., Li B. Rapid assessment of wood density of live trees using Resistograph for selection in tree improvement programs // Can. J. For. Res. 2003. V. 33. N. 12. P. 2426–2435.
Ivković M., Wu H. X., McRae T. A., Powell M. B. Developing breeding objectives for radiata pine structural wood production. I. Bioeconomic model and economic weights // Can. J. For. Res. 2006. V. 36. N. 11. P. 2920–2931.
James W. L. Effect of temperature on readings of electric moisture meters // For. Prod. J. 1968. V. 18. N. 10. P. 23–31.
James W. L. Electric moisture meters for wood. Gen. Tech. Rep. FPL-GTR-6. Madison, WI: USDA, For. Serv., For. Prod. Lab., 1988. 17 p.
James W. L., Yen Y.-H., King R. J. A microwave method for measuring moisture content, density, and grain angle of wood // Res. Note FPL-0250, 1985. P. 1–9.
Jeon E., Choi S., Yeo K.-H., Park K. S., Rathod M. L., Lee J. Development of electrical conductivity measurement technology for key plant physiological information using microneedle sensor // J. Micromech. Microeng. 2017. V. 27. N. 8. Article number 085009.
Jessome A. P. Résistance et propriétés connexes des bois indigènes au Canada. Sainte-Foy, QC, Canada: Forintek Canada Corp., 2000. 27 р.
Johansson J., Hagman O., Fjellner B.-A. Predicting moisture content and density distribution of Scots pine by microwave scanning of sawn timber // J. Wood Sci. 2003. V. 49. Iss. 4. P. 312–316.
Jung D.-H., Park S. H., Han X. Z., Kim H.-J. Image processing methods for measurement of lettuce fresh weight // J. Biosyst. Eng. 2015. V. 40. Iss. 1. P. 89–93.
Kettunen P. O. Wood structure and properties. Zurich, Switzerland: Trans. Tech. Publ. Ltd., Stäfa: 2006. 401 р.
Kimberley M. O., Cown D. J., McKinley R. B., Moore J. R., Dowling L. J. Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine // N. Z. J. For. Sci. 2015. V. 45. Iss. 1. Article number 22.
Kimberley M., McKinley R., Cown D., Moore J. Modelling the variation in wood density of New Zealand-grown Douglas-fir // N. Z. J. For. Sci. 2017. V. 47. Iss. 1. Article number 15.
King J. N., Yeh F. C., Heaman J. C., Dancik B. P. Selection of wood density and diameter in controlled crosses of coastal Douglas-fir // Silvae Genet. 1988. V. 37. P. 152–157.
King R. J., Yen Y. H. Probing amplitude, phase, and polarization of microwave field distributions in real time // IEEE Trans. Microw. Theory Tech. MTT. 1981. V. 29. P. 1225–1231.
Kloiber M., Kotlínová M., Tippner J. Estimation of wood properties using pin pushing in method with various shapes of the penetration pin // Acta Univ. Agr. Silv. Mendelianae Brun. 2009. V. 57. N. 2. P. 53–60.
Koizumi A. Studies on the estimation of the mechanical properties of standing trees by non-destructive bending test // Bull. Coll. Exp. For., Fac. Agr., Hokkaido Univ. 1987. V. 44. N. 4. P. 1329–1415.
Kollmann F. F. P., Côté W. A. Solid wood. Berlin: Springer, 1984. 592 p.
Koppán A., Szarka L., Wesztergom V. Annual fluctuation in amplitudes of daily variations of electrical signals measured in the trunk of a standing tree // Compt. Rendus Acad. Sci. 2000. V. 323. N. 6. P. 559–563.
Korell U., Blofeld O. Die Anwendung radiometrischer Methoden für Dichte- und Feuchtemessungen an Hackschnitzeln // Wissenschaftliche Tagung der Sektion Forstwirtschaft vom 16. Okt. bis 18. Okt. 1978. Vorträge III. Tech. Univ. Dresden, 1978. Р. 109–116.
Kothiyal V., Raturi A. Estimating mechanical properties and specific gravity for five-year-old Eucalyptus tereticornis having broad moisture content range by NIR spectroscopy // Holzforschung. 2011. V. 65. N. 5. P. 757–762.
Krajnc L. The influence of silvicultural practices on mechanical properties of softwood timber. Thesis submitted to the Nat. Univ. Ireland Galway as fulfilment for the requirements for the Degree of Doctor of Philosophy. Coll. Engineer. Inform., Nat. Univ. Ireland Galway, 2019. 186 p.
Kumar S., Burdon R. D., Stovold G. T., Gea L. D. Implications of selection history on genetic architecture of growth, form, and wood-quality traits in Pinus radiata // Can. J. For. Res. 2008. V. 38. N. 9. P. 2372–2381.
Kuntz J. E., Riker A. J. The use of radio-active isotopes to ascertain the role of root grafting in the translocation of water, nutrients and disease inducing organisms among forest trees // Proc. Int. Conf. Peaceful Uses Atomic Energy, Geneva. 1956. V. 12. P. 144–145.
Laitakari E. The root system of pine. A morphological investigation // Acta For. Fenn. 1929. V. 33. N. 1. P. 1–380.
Lasserre J.-P., Mason E. G., Watt M. S. The effects of genotype and spacing on Pinus radiata [D. Don] corewood stiffness in an 11-year old experiment // For. Ecol. Manag. 2005. V. 205. N. 1–3. P. 375–383.
Lasserre J.- P., Mason E. G., Watt M. S., Moore J. R. Influence of initial planting spacing and genotype on microfibril angle, wood density, fibre properties and modulus of elasticity in Pinus radiata D. Don corewood // For. Ecol. Manag. 2009. V. 258. Iss. 9. P. 1924–1931.
Launay J., Ivkovich M., Pâques L., Bastien C., Higelin P., Rozenberg P. Rapid measurement of trunk MOE on standing trees using RIGIDIMETER // Ann. For. Sci. 2002. V. 59. Iss. 5. P. 465–469.
Launay J., Rozenberg P., Pâques L., Dewitte J.-M. A new experimental device for rapid measurement of the trunk equivalent modulus of elasticity on standing trees // Ann. For. Sci. 2000. V. 57. Iss. 4. P. 351–359.
Legg M., Bradley S. Measurement of stiffness of standing trees and felled logs using acoustics: A review // J. Acoust. Soc. Am. 2016. V. 139. N. 2. P. 588–604.
Lenz P., Auty D., Achim A., Beaulieu J., MacKay J. Genetic improvement of white spruce mechanical woodtraits – early screening by means of acoustic velocity // Forests. 2013. V. 4. Iss. 3. P. 575–594.
Li L., Wu H. X. Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata // Can. J. For. Res. 2005. V. 35. N. 8. P. 2019–2029.
Lindström H., Reale M., Grekin M. Using non-destructive testing to assess modulus of elasticity of Pinus sylvestris trees // Scand. J. For. Res. 2009. V. 24. Iss. 3. P. 247–257.
Liu C., Zhang S., Cloutier A., Rycabel T. Modeling lumber bending stiffness and strength in natural black spruce stands using stand and tree characteristics // For. Ecol. Manag. 2007. V. 242. Iss. 2–3. P. 648–655.
Livingston A. K., Cameron A. D., Petty J. A., Lee S. L. Effect of growth rate on wood properties of genetically improved Sitka spruce // Forestry. 2004. V. 77. Iss. 4. P. 325–334.
Llana D. F., Hermoso E., Izquierdo S. T., Bobadilla I., Iñiguez-Gonzalez G. The effect of moisture content on nondestructive probing measurements // Proc. 19th Int. Nondestructive Testing and Evaluation of Wood Symp. Gen. Tech. Rep. FPL-GTR-239, 2015. P. 187–191.
Llana D. F., Hermoso E., Bobadilla I., Iñiguez-Gonzalez G. Influence of moisture content on the results of penetration and withdrawal resistance measurements on softwoods // Holzforschung. 2018. V. 72. N. 7. P. 549–555.
Lorensani R. G. M., Gonçalves R., Müller G., da Silva Alves C., Martins G. A., Ruy M., da Veiga N. S. Evolution of eucalyptus clone's parameters obtained nondestructively in nursery seedlings up to cutting age // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017a. P. 370–376.
Lorensani R. G. M., Gonçalves R., Merlo E., Santaclara O., Touza M., Guaita M., Lario F. J. Prediction of wood properties in trees from parameters obtained nondestructively in nursery seedlings // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017b. P. 377–385.
Louzada J. L. P. C., Fonseca F. M. A. The heritability of wood density components in Pinus pinaster Ait. and the implications for tree breeding // Ann. For. Sci. 2002. V. 59. Iss. 8. P. 867–873.
Lowell E. C., Todoroki C. L., Dykstra D. P., Briggs D. G. Linking acoustic velocity of standing Douglas-fir trees to veneer stiffness: a tree-log-product study across thinning treatments // N. Z. J. For. Sci. 2014. V. 44. N. 1. P. 1–16.
Lundgren N., Hagman O., Johansson J. Predicting moisture content and density distribution of Scots pine by microwave scanning of sawn timber II: evaluation of models generated on a pixel level // J. Wood Sci. 2006. V. 52. Iss. 1. P. 39–43.
Ma T., Inagaki T., Tsuchikawa S. Calibration of SilviScan data of Cryptomeria japonica wood concerning density and microfibril angles with NIR hyperspectral imaging with high spatial resolution // Holzforschung. 2017. V. 71. N. 4. P. 341–347.
Ma T., Inagaki T., Tsuchikawa S. Non-destructive evaluation of wood stiffness and fiber coarseness, derived from SilviScan data, via near infrared hyperspectral imaging // J. NIR Spectroscopy. 2018. V. 26. N. 6. P. 398–405.
MacDonald E. A review of the effects of silviculture on timber quality of Sitka spruce // Forestry. 2002. V. 75. Iss. 2. P. 107–138.
Mai T. C., Razafindratsima S., Sbartai Z. M., Demontoux F., Bos F. Non-destructive evaluation of moisture content of wood material at GPR frequency // Constr. Build. Mater. 2015. V. 77. P. 213–217.
Malavasi U. C., Davis A. S., Malavasi M. M. Estimating water in living woody stems – a review // Cerne. 2016. V. 22. N. 4. P. 415–422.
Maldonado I. B., Herrero M. E., González G. Í., Martitegui F. A., Montesinos D. B., Monteagudo J. P. Density estimation by screw withdrawal resistance and probing in structural sawn coniferous timber, and modulus of elasticity assessment // Inf. Constr. 2007. V. 59. P. 107–116.
Mamdy C. Contribution à l’étude du module d’élasticité de troncs d’arbres sur pied; utilisation en amelioration génétique des arbres forestiers // Rapport DEA Matière condensée et diluée, ESEM Orléans, INRA Orléans, 1995. 47 p.
Mamdy C., Rozenberg P., Franc A., Launay J., Scherman N., Bastien J. C. Genetic control of stiffness of standing Douglas fir; from the standing stem to the standardized wood sample, relationships between modulus of elasticity and wood density parameters. Part 1 // Ann. For. Sci. 1999. V. 56. P. 133–143.
Marra G., Pellerin R., Galligan W. Nondestructive determination of wood strength and elasticity by vibration // Holz Roh- Werkst. 1966. V. 24. N. 10. P. 460–466.
Martin P., Collet R., Barthelemy P., Roussy G. Evaluation of wood characteristics: internal scanning of the material by microwaves // Wood Sci. Technol. 1987. V. 21. P. 361–371.
Martinez-Sala R., Rodriguez-Abad I., Barra R. D., Capuz-Lladro R. Assessment of the dielectric anisotropy in timber using the nondestructive GPR technique // Constr. Build. Mater. 2013. V. 38. Iss.9. P. 903–911.
Matheson A. C., Gapare W. J., Ilic J., Wu H. X. Inheritance and genetic gain in wood stiffness in radiata pine assessed acoustically in young standing trees // Silvae Gen. 2008. V. 57. P. 56–64.
Mattheck C., Bethge K., Albrecht W. How to read the results of resistograph M. // Arboricultural J. 1997. V. 21. P. 331–346.
McLain T. E. Design axial withdrawal strength from wood: I. Wood screws and lag screws // For. Prod. J. 1997. V. 47. N. 5. P. 77–84.
Meder R., Trung T., Schimleck L. Seeing the wood in the trees: Unleashing the secrets of wood via near infrared spectroscopy // J. NIR Spectroscopy. 2010. V. 18. Iss. 1. P. 5–7.
Michalikova M., Prauzek M. A hybrid device for electrical impedance tomography and bioelectrical impedance spectroscopy measurement // IEEE 27th Can. Conf. Electr. Comput. Engineer. (CCECE). 2014. Р. 1–4.
Micko M. M., Wang E. I. C., Taylor F. W., Yanchuk A. D. Determination of wood specific gravity in standing white spruce using a Pilodyn tester // For. Chron. 1982. V. 58. N. 4. P. 178–180.
Milota M. R. Specific gravity as a predictor of species correction factors for a capacitance-type moisture meter // For. Prod. J. 1994. V. 44. P. 63–68.
Milota M. R. Calibration of moisture meters for western hardwood species // For. Prod. J. 1996. V. 46. N. 1. P. 39–42.
Mochan S., Moore S., Connolly T. Using acoustic tools in forestry and the wood supply chain. For. Commis., Tech. Note 18, 2009. 6 p.
Moon S., Perron J. T., Martel S. J., Holbrook W. S., St. Clair J. A model of threedimensional topographic stresses with implications for bed-rock fractures, surface processes, and landscape evolution // J. Geophys. Res.: Earth Surface. 2017. V. 122. N. 4. P. 823–846.
Moore J., Achim A., Lyon A., Mochan S., Gardiner B. Effects of early respacing on the physical and mechanical properties of Sitka spruce structural timber // For. Ecol. Manag. 2009. V. 258. Iss. 7. P. 1174–1180.
Moore J. R., Cown D. J., McKinley R. B., Sabatia C. O. Effects of stand density and seedlot on three wood properties of young radiata pine grown at a dry-land site in New Zealand // N. Z. J. For. Sci. 2015. V. 45. N. 4. P. 1–15.
Moqsud M., Yoshitake A. J., Bushra Q. S., Hyodo M., Omine K., Strik D. Compost in plant microbial fuel cell for bioelectricity generation // Waste Manag. 2015. V. 36. P. 63–69.
Mora C. R., Schimleck L. R., Isik F., Mahon J. M., Clark A., Daniels R. F. Relationship between acoustic variables and different measures of stiffness in standing Pinus taeda trees // Can. J. For. Res. 2009. V. 39. N. 8. P. 1421–1429.
Muneri A., Asada T., Tomita K., Kusunoki K., Szota C. Between-tree variation in stem volume, wood density, fibre length and Kraft pulping properties of Eucalyptus globulus and the utility of field-portable NIR spectroscopy and wood cores in evaluating pulpwood quality properties of standing trees // Appita J. 2011. V. 64. Iss. 4. P. 356–361.
Murphy G., Cown D. Stand, stem and log segregation based on wood properties: A review // Scand. J. For. Res. 2015. V. 30. Iss. 8. P. 1–47.
Nadezhdina N., Čermak J. Instrumental methods for studies of structure and function of root systems in large trees // J. Exp. Bot. 2003. V. 54. Iss. 387. P. 1511–1521.
Nepveu G. L'utilisation du torsiometre en foret: influence de l'operateur et de l'appareil // Ann. Sci. For. 1979. V. 36. N. 4. P. 347–51.
Nicholls J. W. P., Roget D. K. Tests on a field method for the determination of wood density // Austral. For. 1977. V. 40. N. 2. P. 144–150.
Notivol E., Gil L. A., Pardos J. A. A method for estimating wood density in standing trees and its variability in Pinus pinaster // Investig. Agr. Sist. Recur. For. 1992. V. 1. P. 41–47.
Nutto L., Biechele T. Drilling resistance measurement and the effect of shaft friction – using feed force information for improving decay identification on hard tropical wood // Proc. 19th Int. Nondestructive Testing and Evaluation of Wood Symp. / Ross R. J., Gonçalves R., Wang X. (Eds.). Gen. Tech. Rep. FPL-GTR-239. USDA, For. Serv., For. Prod. Lab., Madison, WI, 2015. P. 154–161.
Oliveira J. T., Wang X., Vidaurre G. B. Assessing specific gravity of young Eucalyptus plantation trees using a resistance drilling technique // Holzforschung. 2017. V. 71. N. 2. P. 137–145.
Ovington J. D., Madgwick H. A. I. The growth and composition of natural stands of birch. 1. Dry-matter production // Plant and Soil. 1959. V. 10. N. 3. P. 271–283.
Palma S. S. A., Gonçalves R., Trinca A. J., da Costa C. P., Martins G. A. Interference of pith, knots and interpolation system in ultrasonic tomography images // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 194–201.
Pâques L. E., Rozenberg P. Ranking larch genotypes with the Rigidimeter: relationships between modulus of elasticity of standing trees and of sawn timber // Ann. For. Sci. 2009. V. 66. N. 4. Article number 414.
Paradis N., Auty A., Carter P. A. Using a standing-tree acoustic tool to identify forest stands for the production of mechanically-graded lumber // Sensors. 2013. V. 13. Iss. 3. P. 3394–3408.
Park C. Y., Kim S. J., Lee J. J. Evaluation of specific gravity in post member by drilling resistance test // J. Kor. Wood Sci. Technol. 2006. V. 34. Iss. 2. P. 1–9.
Park H. J., Park J. H., Park K. S., Ahn T. I., Son J. E. Nondestructive measurement of paprika (Capsicum annuum L.) internal electrical conductivity and its relation to environmental factors // Horticult. Sci. Technol. 2018. V. 36. Iss. 5. P. 691–701.
Parkinson K. J. Bioelectric potentials in plants. Doctoral thesis. Durham: Durham Univ., 1963. 371 p.
Peltola H., Kilpeläinen A., Sauvala K., Räisänen T., Ikonen V. P. Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine // Silva Fenn. 2007. V. 41. N. 3. P. 489–505.
Piene H., Fensom D. S., McIsaac J. E., Thompson R. G., Alexander K. G. Electrical resistance and capacitance measurements on young, spaced and unspaced, defoliated and protected, balsam fir trees // Can. J. For. Res. 1984a. V. 14. N. 6. P. 811–817.
Piene H., Thompson R. G., McIsaac J. E., Fensom D. S. Electrical resistance measurements of young balsam fir trees in relation to specific volume increment, foliar biomass, and ion content of bark and wood // Can. J. For. Res. 1984b. V. 14. N. 2. P. 177–180.
Polge H. Établissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d’échantillons prélevés à la tarière sur des arbres vivants. Applications dans les domaines Technologique et Physiologique. Thèse de Doctorat. Univ. de Nancy, France, 1966. 206 p.
Polge M., Keller R. Premiere appreciation de la qualite du bois en forgt par utilisation d'un torsiometer // Ann. Sci. For. 1970. V. 27. N. 2. P. 197–223.
Pot D., Chantre G., Rozenberg P., Rodrigues J. C., Jones G. L., Pereira H., Hannrup B., Cahalan C., Plomion C. Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.) // Ann. For. Sci. 2002. V. 59. N. 5–6. P. 563–575.
Pressler M. R. Der forstliche Zuwachsbohrer neuester Construction und dessen praktische Bedeutung und Anwendung für die forstliche Forschungs-, Taxations-, Pflege- und Nutzungs-Technik // Tharander Jahrbuch. 1866. V. 17. N. 3. P. 113–209.
Proceedings of 10th European Conference on Non-Destructive Testing, 2010 (ECNDT). Moscow, Russia, 7–11 June 2010. Vol. 1 of 5. NY: Curran Associates, Inc., 2011. 29 p.
Raschi A., Tognetti R., Ridder H. W., Beres C. Water in the stems of sessile oak (Quercus petraea) assessed by computer tomography with concurrent measurements of sap velocity and ultrasound emission // Plant Cell Environ. 1995. V. 18. Iss. 5. P. 545–554.
Raymond C. A., Joe B., Anderson D. W., Watt D. J. Effect of thinning on relationships between three measures of wood stiffness in Pinus radiata: Standing trees vs. logs vs. short clear specimens // Can. J. For. Res. 2008. V. 38. N. 11. P. 2870–2879.
Razafindratsima S., Sbartai Z. M., Demontoux F. Permittivity measurement of wood material over a wide range of moisture content // Wood Sci. Technol. 2017. V. 51. Iss. 6. P. 1421–1431.
Reis M. N., Palma S. S. A., Ziller D. P., Gonçalves R., Esteban M., Íñiguez-González G., Basterrechea M. A. Association of ultrasonic tomography and drilling resistance in decay evaluation of trees // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 187–193.
Rinn F. Eine neue Bohrmethode zur Holzuntersuchung // Holz-Zentralblatt. 1989. V. 115. N. 34. P. 529–530.
Rinn F. Basics of micro-resistance drilling for timber inspection // Holztechnologie. 2012. V. 53. Iss. 3. P. 24–29.
Rinn F., Schweingruber F. H., Schär E. RESISTOGRAPH and X-ray density charts of wood : comparative evaluation of drill resistance profiles and X-ray density charts of different species // Holzforschung. 1996. V. 50. Iss. 4. P. 303–311.
Ross R. J. (Ed.). Nondestructive evaluation of wood, 2nd Ed. Gen. Tech. Rep. FPL-GTR-238. Madison, WI: USDA For. Serv., For. Prod. Lab., 2015. 169 p.
Rozenberg P., Franc A., Mamdy C., Launay J., Schermann N., Bastien J. C. Genetic control of stiffness of standing Douglas-fir; from the standing stem to the standardised wood sample, relationships between modulus of elasticity and wood density parameters. Part II // Ann. For. Sci. 1999. V. 56. N. 2. P. 145–154.
Rozenberg P., Van de Sype H. Genetic variation of the Pilodyn-girth relationship in Norway pine spruce (Picea abies L. (Karst)) // Ann. For. Sci. 1996. V. 53. N. 6. P. 1153–1166.
Rudnicki M., Wang X., Ross R. J., Allison R. B., Perzynski K. Measuring wood quality in standing trees: a review // USDA For. Serv. Gen. Tech. Rep. FPL-GTR-248, 2017. 11 p.
Ruggirello M. Nondestructive testing of ponderosa pine wood quality influence of stand and tree-level variables on acoustic velocity and wood density. Submitted to the Faculty of the North. Arizona Univ. School of Forestry in partial fulfillment of the requirements for the degree of Master of Forestry, 2017. 36 p.
Sambuelli L., Socco L. V., Godio A., Nicolotti G., Martinis R. Ultrasonic, electric and radar measurements for living trees assessment // Boll. Geofis. Teor. Appl. 2003. V. 44. N. 3–4. P. 253–279.
Sánchez E. M., Caballé G., Gonçalves R., Mansini R., Santaclara O., Guaita M., Leza F. J. L. Solid wood quality prediction capacity with acoustic methods in young trees // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017а. P. 395–401.
Sánchez E. M., Charpentier J. P., Segura V., Bertoldi I., Caballé G., Santaclara O. The potential of portable NIRS devices for rapid, nondestructive measurement of basic wood density on standing trees // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017b. P. 525.
Sandoz J.-L., Benoit Y. Timber grading machine using ultrasonic and density measurements: Triomatic // 15th Int. Symp. nondestructive testing of wood, Duluth, 10–12 Sept., 2007. Duluth, MN, USA, 2007. P. 10–12.
Sandoz J.-L., Benoit Y., Demay L. Wood testing using acousto-ultrasonic // 12th Int. Symp. nondestructive testing of wood, Sopron, 13–15 Sept., 2000. Sopron: Univ. West. Hungary, 2000. P. 97–104.
Savill P. S., Sandels A. J. The influence of early respacing on the wood density of Sitka spruce // Forestry. 1983. V. 65. N. 2. P. 109–120.
Schajer G. S. Lumber strength grading using X-ray scanning // For. Prod. J. 2001. V. 6. N. 3. P. 43–50.
Schajer G. S., Orhan F. B. Measurement of wood grain angle, moisture content and density using microwaves // Europ. J. Wood Wood Prod. 2006. V. 64. Iss. 6. P. 483–490.
Schepper V. D., Dusschoten D. V., Copini P., Jahnke S., Steppe K. MRI links stem water content to stem diameter variations in transpiring trees // J. Exp. Bot. 2012. V. 63. Iss. 7. P. 2645–2653.
Schermann N. Étude des paramètres génétiques de trois populations de Douglas vert (Pseudotsuga menziesii (Mirb.) Franco), analyse d’un diallèle 16´16, conséquences pour la stratégie d’amélioration génétique de l’espèce. Thèse Inst. Nat. Agron. Paris Grignon-INRA Orléans, France, 1994. 117 p.
Schimleck L. R., Kube P. D. A, Raymond C., Michell A. J., French J. Estimation of whole-tree kraft pulp yield of Eucalyptus nitens using near-infrared spectra collected from increment cores // Can. J. For. Res. 2005. V. 35. N. 12. P. 2797–2805.
Schimleck L., Dahlen J., Apiolaza L. A., Downes G., Emms G., Evans R., Moore J., Pâques L., Van den Bulcke J., Wang X. Non-destructive evaluation techniques and what they tell us about wood property variation // Forests. 2019. V. 10. Iss. 9. Article number 728. 50 p.
Schweingruber E. H. Dendroökologische Holzanatomie: Anatomische Grundlagen der Dendrochronologie. Berne: Paul Haupt Verlag, 2001. 472 p.
Senalik C. A., Wacker J. P., Wang X., Rodrigues B. P., Jalinoos F. Assessing ability of ground-penetrating radar to detect internal moisture and fungal decay in Douglas-fir beams // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 286–297.
Shortle C. W., Shigo A. L., Berry P., Abusamra J. Electrical resistance in tree cambium zone: Relationship to rates of growth and wound closure // For. Sci. 1977. V. 23. Iss. 3. P. 326–329.
Shupe T. F., Wu Q., Hartley I. D. Calibration of moisture meters for southern hardwoods // For. Prod. J. 2002. V. 52. N. 718. P. 59–62.
Silva Oliveira J. T., Wang X., Vidaurre G. B., Rodrigues B. P. Relationship between wood moisture content and drilling resistance in eucalypt trees // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 470.
Simic K., Gendvilas V., O’Reilly C., Harte A. M. Predicting structural timber grade-determining properties using acoustic and density measurements on young Sitka spruce trees and logs // Holzforschung. 2019. V. 73. Iss. 2. P. 139–149.
Sivasankar P., Seedevi P., Poongodi S., Sivakumar M., Murugan T., Sivakumar L., Sivakumar K., Balasubramanian T. Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72 // Carbonhydrate Polymers. 2018. V. 181. P. 752–759
Smith D. M., Allen S. J. Measurement of sap flow in plant stems // J. Exp. Bot. 1996. V. 47. Iss. 12. P. 1833–1844.
Smith D. M., Larson B. C., Kelty M. J., Ashton P. M. S. The practice of silviculture: Appl. for. ecol. 9th ed. New York: John Wiley & Sons, 1997. 537 p.
Smith S. M., Morrell J. J. Correcting Pilodyn measurement of Douglas-fir for different moisture levels // For. Prod. J. 1986. V. 36. P. 45–46.
Smith K. T., Ostrofsky W. D. Cambial and internal resistance of red spruce trees in eight diverse stands in the northeastern United States // Can. J. For. Res. 1993. V. 23. N. 2. P. 322–326.
Sofianto I. A., Inagaki T., Ma T., Tsuchikawa S. Effect of knots and holes on the modulus of elasticity prediction and mapping of sugi (Cryptomeria japonica) veneer using near-infrared hyperspectral imaging (NIR-HSI) // Holzforschung. 2019. V. 73. N. 3. P. 259–268.
Sparks J. P., Gaylon S, Campbell R., Black A. Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study // Oecologia. 2001. V. 127. Iss. 4. P. 468–475.
Sprague J. R., Talbert J. T., Jett J. B., Bryant R. L. Utility of the Pilodyn in selection for mature wood specific gravity in loblolly pine // For. Sci. 1983. V. 29. N. 4. P. 696–701.
Strik D. P. B. T. B., Hamelers (Bert) H. V. M., Snel J. F. H., Buisman C. J. N. Green electricity production with living plants and bacteria in a fuel cell // Int. J. Energy Res. 2008. V. 32. Iss. 9. P. 870–876.
Taki S., Nobori Y., Caceres M. L. L. Method for estimation of stem carbon fixation of Japanese black pine by combining stem analysis and soft X-ray densitometry // J. For. Res. 2014. V. 19. N. 1. P. 226–232.
Tattar T. A., Saufley G. C. Comparison of electrical resistance and impedance measurements in wood in progressive stages of discoloration and decay // Can. J. For. Res. 1973. V. 3. N. 4. P. 593–595.
Taylor F. W. Rapid determination of southern pine specific gravity with a Pilodyn tester // For. Sci. 1981. V. 27. P. 59–61.
Tiitta M., Tomppo L. Air-coupled ultrasound and electrical impedance spectroscopy applications for wood // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 514.
Todoroki C. L., Lowell E. C. Validation of models predicting modulus of elasticity in Douglas-fir trees, boles, and logs // N. Z. J. For. Sci. 2016. V. 46. Article number 11.
Trejo J. L. D. Using acoustic measurements and inventory data to estimate stiffness in standing Douglas-fir trees. MSc. Thesis. Corvallis, OR: Oregon St. Univ., 2015. 35 р.
Trewavas A. Aspects of plant intelligence // Ann. Bot. 2003. V. 92. N. 1. P. 1–20.
Tsehaye A. Within- and between-tree variations in the wood quality of radiata pine. PhD thesis, School of Forestry, Univ. Canterbury, Christchurch, New Zealand, 1995. 290 p.
Veres I. A., Sayir M. B. Wave propagation in a wooden bar // Ultrasonics. 2004. V. 42. N. 1. P. 495–499.
Vihermaa L. Influence of site factors and climate on timber properties of Sitka spruce (Picea sitchensis (Bong.) Carr.). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy. Environ., Agr. and Analyt. Chem. Chem. Dep., Univ. Glasgow, 2010. 372 p.
Villeneuve M., Morgenstern E. K., Sebastian L. P. Estimation of wood density in family tests of jack pine and black spruce using the Pilodyn tester // Can. J. For. Res. 1987. V. 17. P. 1147–1149.
Vincent M., Krause C., Koubaa A. Variation in black spruce (Picea mariana (Mill.) BSP) wood quality after thinning // Ann. For. Sci. 2011. V. 68. Iss. 6. P. 1115–1125.
Voeikova T. A., Emel’yanova L. K., Novikova L. M., Shakulov R. S., Sidoruk K. V., Debabov V. G., Smirnov I. A., Il’in V. K., Soldatov P. E., Tyurin-Kuz’min A. Y., Smolenskaya T. S. Intensification of bioelectricity generation in microbial fuel cells using Shewanella oneidensis MR-1 mutants with increased reducing activity // Microbiology. 2013. V. 82. N. 4. P. 410–414 (Original Russian Text © T. A. Voeikova, L. K. Emel’yanova, L. M. Novikova, R. S. Shakulov, K. V. Sidoruk, I. A. Smirnov, V. K. Il’in, P. E. Soldatov, A. Yu. Tyurin-Kuz’min, T. S. Smolenskaya, V. G. Debabov, 2013, publ. in Mikrobiologiya. 2013. V. 82. N. 4. P. 402–407).
Vogt U. K. Hydraulic vulnerability, vessel refilling, and seasonal courses of stem water potential of Sorbus aucuparia L. and Sambucus nigra L. // J. Exp. Bot. 2001. V. 52. P. 1527–1536.
Waghorn M. J., Watt M. S., Mason E. G. Influence of tree morphology, genetics, and initial stand density on outerwood modulus of elasticity of 17-year-old Pinus radiata // For. Ecol. Manag. 2007. V. 244. N. 1–3. P. 86–92.
Wang S.-Y., Chuang S.-T. Experimental data correction of the dynamic elastic moduli, velocity and density of solid wood as a function of moisture content above the fiber saturation point // Holzforschung. 2000. V. 54. P. 309–314.
Wang T., Aitken S. N., Rozenberg P., Carlson M. R. Selection for height growth and Pilodyn pin penetration in lodgepole pine: effects on growth traits, wood properties, and their relationships // Can. J. For. Res. 1999. V. 29. P. 434–445.
Wang X. Acoustic measurements on trees and logs: A review and analysis // Wood Sci. Technol. 2013. V. 47. P. 965–975.
Wang X., Carter P., Ross R. J., Brashaw B. K. Acoustic assessment of wood quality of raw forest materials – A path to increased profitability // For. Prod. J. 2007. V. 57. P. 6–14.
Wang X., Ross R. J., Mcclellan M., Barbour R. J., Erickson J. R., Forsman J. W., McGinnis G. D. Nondestructive evaluation of standing trees with a stress wave method // Wood Fiber Sci. 2001. V. 33. P. 522–533.
Wang X., Senalik C. A., Ross R. J. (Eds.). Proc. 20th Int. Symp. nondestructive testing and evaluation of wood. Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. 539 p.
Wang X., Verrill S., Lowell E., Ross R. J., Herian V. L. Acoustic sorting models for improved log segregation // Wood and Fiber Sci. 2013. V. 45. N. 4. P. 343–352.
Watanabe K., Kobayashi I., Kuroda N., Harada M., Noshiro S. Predicting oven-dry density of Sugi (Cryptomeria japonica) using near infrared (NIR) spectroscopy and its effect on performance of wood moisture meter // J. Wood Sci. 2012. V. 58. P. 383–390.
Watt M. S., Zoric B., Kimberley M. O., Harrington J. Influence of stocking on radial and longitudinal variation in modulus of elasticity, microfibril angle, and density in a 24-year-old Pinus radiata thinning trial // Can. J. For. Res. 2011. V. 41. N. 7. P. 1422–1431.
Wengert G., Bois P. Evaluation of electric moisture meters on kiln-dried lumber // For. Prod. J. 1997. V. 47. N. 6. P. 60–62.
Wessels C. B., Malan F. S., Rypstra T. A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber // Europ. J. For. Res. 2011. V. 130. P. 881–893.
Williamson G. B., Wiemann M. C. Measuring wood specific gravity correctly // Am. J. Bot. 2010. V. 97. P. 519–524.
Wilson P. J. Accuracy of a capacitance-type and three resistance-type pin meters for measuring wood moisture content // For. Prod. J. 1999. V. 49. P. 29–32.
Wu H. X., Ivković M., Gapare W. J., Baltunis B. S., Powell M. B., McRae T. A. Breeding for wood quality and profit in radiata pine: a review of genetic parameters // N. Z. J. For. Sci. 2008. V. 38. P. 56–87.
Yanchuk A. D., Kiss G. K. Genetic variation in growth and wood specific gravity and its utility in the improvement of interior spruce in British Columbia // Silvae Genet. 1993. V. 42. P. 141–148.
Yang J.- L., Ilic J., Wardlaw T. Relationships between static and dynamic modulus of elasticity for a mixture of clear and decayed eucalypt wood // Austral. For. 2003. V. 66. N. 3. P. 193–196.
Yin Y., Nagao H., Liu X., Nakai T. Mechanical properties assessment of Cunninghamia lanceolata plantation wood with three acoustic based nondestructive methods // J. Wood Sci. 2010. V. 56. N. 1. P. 33–40.
Yu L., Liang Y., Zhang Y., Cao J. Mechanical properties of wood materials using near‑infrared spectroscopy based on correlation local embedding and partial least‑squares // J. For. Res. 2020. V. 31. P. 1053–1060.
Yue X., Wang L., Ge X., Wang X. Quantitative detection of internal decay degree for standing trees based on three NDT methods - electric resistance tomography, stress wave imaging and resistograph techniques // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 167–179.
Zhang H., Feng D., Wang X. Ultrasonic method for evaluating wood quality of poplar seedlings // Proc. 20th Int. Symp. nondestructive testing and evaluation of wood / Wang X., Senalik C. A., Ross R. J. (Eds.). Gen. Tech. Rep. FPL-GTR-249. Madison, WI: USDA, For. Serv., For. Prod. Lab., 2017. P. 360–369.
Zhang H., Guo Z., Su J. Application of a drill resistance technique for rapid determining wood density. Progress of machining technology // Key Eng. Mater. 2009. V. 407–408. P. 494–499.
Zhang S. Y. Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories // Wood Sci. Tech. 1995. V. 29. P. 451–465.
Zhang S. Y., Chauret G., Ren H. Q., Desjardins R. Impact of plantation black spruce initial spacing on lumber grade yield, bending properties and MSR yield // Wood Fiber Sci. 2002. V. 34. N. 3. P. 460–475.
Zhang S. Y., Chauret G., Swift D. E., Duchesne I. Effects of pre-commercial thinning on tree growth and lumber quality in a jack pine stand in New Brunswick, Canada // Can. J. For. Res. 2006. V. 36. N. 4. P. 945–952.
Zobel B. J., Jett J. B. Genetic controls in wood formation In: Genetics of wood production. Berlin: Springer-Verlag, 1995. P. 26–49.
Zobel B. J., van Buijtenen J. P. Wood variation, its causes and control. Berlin: Springer-Verlag, 1989. 363 p.