RU EN

Меню страницы:

Публикации 2014-2023 гг.

Ключевые слова:
11.05.2020 г.
Страницы:
16–29

Реферат

УДК 630*52:630*174.754

Усольцев В. А.1, 2, Цепордей И. С.1 Климатические градиенты фитомассы насаждений Quercus spp. на территории Евразии // Сибирский лесной журнал. 2020. № 6. С. 16–29.

DOI: 10.15372/SJFS20200602

© Усольцев В. А., Цепордей И. С., 2020

Активная хозяйственная деятельность человека привела к существенным глобальным изменениям в функционировании биосферы, и наблюдаемое потепление климата оказывает существенное влияние на растительный покров планеты. Вследствие видоспецифичности реакций лесных экосистем на изменения климата и сложности их морфоструктуры, изменения биопродуктивности в пределах биомов и материков моделируются с использованием сформированных баз эмпирических данных по отдельным древесным видам с учетом их морфоструктуры. При этом первоочередное внимание уделяется изменению фитомассы лесных насаждений под влиянием средних температур и осадков. Однако результаты моделирования откликов фитомассы лесов на глобальные изменения температуры и осадков противоречивы и характеризуются существенной неопределенностью в прогнозах климатически обусловленной динамики лесного покрова. Настоящая статья посвящена исследованию трансконтинентальных климатически обусловленных трендов в структуре фитомассы лесов, формируемых видами рода Quercus spp. На основе сформированной базы данных из 663 пробных площадей на территории от Франции до Японии и Китая выявлены статистически значимые изменения в структуре фитомассы насаждений, связанные со сдвигами зимних температур и среднегодовых осадков. Установлено, что при предполагаемом повышении температуры может происходить увеличение фитомассы общей, надземной и стволов, но масса листвы, ветвей и корней возрастает лишь в регионах достаточного увлажнения, а при нехватке осадков она снижается. В случае увеличения осадков при неизменной температуре фитомасса общая, надземная, подземная и стволов может снижаться, но масса листвы и ветвей сократится лишь в холодных регионах, а в тёплых может произойти ее увеличение до 20-30 %.

Текст статьи


СПИСОК ЛИТЕРАТУРЫ (REFERENCES)

Базилевич Н. И., Родин Л. Е. Картосхемы продуктивности и биологического круговорота главнейших типов растительности суши // Изв. ВГО. 1967. Т. 99. № 3. С. 190–194 [Bazilevich N. I., Rodin L. E. Kartoskhemy produktivnosti i biologicheskogo krugovorota glavneyshikh tipov rastitelnosti sushi (Schematic maps of productivity and biological turnover of elements in the main types of land vegetation) // Izv. Vsesoyuz. Geogr. Ob-va (Proc. All-Union Geogr. Soc.). V. 99. N. 3. P. 190–194 (in Russian)].

Глебов Ф. З., Литвиненко В. И. Динамика ширины годичных колец в связи с метеорологическими показателями в различных типах болотных лесов // Лесоведение. 1976. № 4. С. 56–62 [Glebov F. Z., Litvinenko V. I. Dinamika shiriny godichnykh kolets v svyazi s meteorologicheskimi pokazatelyami v razlichnykh tipakh bolotnykh lesov (The dynamics of tree ring width in relation to meteorological indices in different types of wetland forests) // Lesovedenie (For. Sci.). 1976. N. 4. P. 56–62 (in Russian with English abstract)].

Григорьев А. А., Будыко М. И. О периодическом законе географической зональности // Докл. АН СССР. 1956. Т. 110. № 1. С. 129–132 [Grigoryev A. A., Budyko M. I. O periodicheskom zakone geograficheskoy zonalnosti (On the periodic law of geographical zoning) // Dokl. AN SSSR (Proc. USSR Acad. Sci.). 1956. V. 110. N. 1. P. 129–132 (in Russian)].

Дрейпер Н., Смит Г. Прикладной регрессионный анализ. М.: Статистика, 1973. 392 с. [Drаper N., Smith G. Prikladnoy regressionny analiz (Applied regression analysis). Moscow: Statistika, 1973. 392 р. (in Russian)].

Комаров В. Л. Меридиональная зональность организмов // Дневник I Всерос. съезда русских ботаников в Петрограде. Вып. 3. Петроград, 1921. С. 27–28 [Komarov V. L. Meridional’naya zonal’nost’ organizmov (Meridional zonality of organisms) // Dnevnik I Vseros. syezda russkikh botanikov v Petrograde (Diary of the 1st All-Russian Congress of Russian botanists in Petrograd). Iss. 3. Petrograd, 1921. P. 27–28 (in Russian)].

Костин С. И. Солнечная активность и влияние ее на прирост деревьев и состояние лесных насаждений в центральной части лесостепи Русской равнины // Тр. Главной геофизической обсерватории им. А. И. Воейкова. 1961. Вып. 111. С. 108–117 [Kostin S. I. Solnechnaya aktivnost i vliyanie ee na prirost dereviev i sostoyanie lesnykh nasazhdeniy v tsentralnoy chasti lesostepi Russkoy ravniny (Solar activity and its influence on the growth of trees and the state of forests in the central part of the forest-steppe of the Russian plain) // Tr. Glavnoy geofizicheskoy observatorii im. A. I. Voyeykova (Proc. A. I. Voeikov main geophysical Observatory). 1961. Iss. 111. P. 108–117 (in Russian)].

Лит Х. Моделирование первичной продуктивности Земного шара // Экология. 1974. № 2. С. 13–23 [Lieth Kh. Modelirovanie pervichnoy produktivnosti Zemnogo shara (Modeling the primary productivity of the Globe) // Ekologiya (Ecology). 1974. N. 2. P. 13–23 (in Russian with English abstract)].

Морозов Г. Ф. Учение о лесе. 6-е изд. М., Л.: Сельхозгиз, 1931. 438 с. [Morozov G. F. Uchenie o lese. 6-e izd. (Teaching about the forest. 6th ed.). Moscow, Leningrad: Selkohozgiz, 1931. 438 p. (in Russian)].

Никитин К. Е. Лес и математика // Лесн. хоз-во. 1965. № 5. С. 25–29 [Nikitin K. E. Les i matematika (Forest and mathematics) // Lesn. khoz-vo (Forestry). 1965. N. 5. P. 25–29 (in Russian)].

Одум Е. Основы экологии. М.: Мир, 1975. 740 с. [Odum E. Osnovy ekologii (Fundamentals of Ecology). Moscow: Mir, 1975. 740 р. (in Russian)].

Оленин С. М. Динамика радиального прироста древостоев сосновых фитоценозов среднетаежной подзоны Предуралья: дис… канд. биол. наук: 03.00.16. Свердловск, 1982. 18 с. [Olenin S. M. Dinamika radial’nogo prirosta drevostoev sosnovykh fitotsenozov srednetaezhnoy podzony Preduraliya: dis. ... kand. biol. nauk (Dynamics of radial growth of stands of pine phytocenoses in the middle taiga subzone of the Pre-Urals: cand. biol. sci. (PhD) thesis. Sverdlovsk, 1982. 18 p. (in Russian)].

Риклефс Р. Е. Основы общей экологии. М.: Мир, 1979. 424 с. [Ricklefs R. E. Osnovy obshchey ekologii (Bases of general ecology). Moscow: Mir, 1979. 424 p. (in Russian)].

Тарко А. М. Антропогенные изменения глобальных антропогенных процессов: математическое моделирование. М.: Физматлит, 2005. 231 с. [Tarko A. M. Antropogennye izmeneniya globalnykh antropogennykh protsessov: matematicheskoe modelirovanie (Anthropogenic changes of the global biosphere processes: mathematical modelling). Moscow: Fizmatlit, 2005. 231 p. (in Russian)].

Толмачев А. И. Основы учения об ареалах (Введение в хорологию растений). Л.: Изд-во ЛГУ, 1962. 100 с. [Tolmachev A. I. Osnovy ucheniya ob arealakh (Vvedenie v khorologiyu rasteniy) (Fundamentals of plant habitat theory (Introduction to plant community chorology)). Leningrad: Izd-vo LGU (Leningrad St. Univ. Publ.), 1962. 100 p. (in Russian)].

Усольцев В. А., Колчин К. В., Часовских В. П. Чистая первичная продукция лесообразующих пород в климатических градиентах Евразии // Сиб. лесн. журн. 2018. № 2. С. 28–37 [Usoltsev V. A., Kolchin K. V., Chasovskikh V. P. Chistaya pervichnaya produktsiya lesoobrazuyushchikh porod v klimaticheskikh gradiyentakh Evrazii (Net primary production of forest-forming species in climatic gradients of Eurasia) // Sib. Lesn. Zurn. (Sib. J. For. Sci.). 2018. N. 2. P. 28–37 (in Russian with English abstract)].

Усольцев В. А., Цепордей И. С., Осмирко А. А. Биологическая продуктивность лесов Евразии в связи с температурой и осадками // Лесные экосистемы бореальной зоны: биоразнообразие, биоэкономика, экологические риски. Мат-лы Всерос. конф. с междунар. участ. Красноярск, 26–31 авг., 2019 г. Красноярск: ИЛ СО РАН, 2019а. С. 458–460 [Usoltsev V. A., Tsepordey I. S., Osmirko A. A. Biologicheskaya produktivnost’ lesov Evrazii v svyazi s temperaturoy i osadkami (Biological productivity of Eurasian forests as related to temperature and precipitation) // Lesnye ekosistemy boreal’noy zony: bioraznoobraziye, bioekonomika, ekologicheskiye riski. Mat-ly Vseros. konf. s mezhdunar. uchast. Krasnoyarsk, 26–31 avg., 2019 g. (Forest ecosystems of the boreal zone: biodiversity, bioeconomy, ecological risks. Proc. All-Rus. Conf. with int. participation. Krasnoyarsk, 26–31 Aug., 2019). Krasnoyarsk: Inst. For., Rus. Acad. Sci., Sib. Br., 2019a. P. 458–460 (in Russian with English abstract)].

Усольцев В. А., Цепордей И. С., Часовских В. П. Фитомасса деревьев двухвойных сосен Евразии: аддитивные модели в климатических градиентах // Сиб. лесн. журн. 2019б. № 1. С. 44–56 [Usoltsev V. A., Tsepordey I. S., Chasovskikh V. P. Fitomassa derev’ev dvukhvoynykh sosen Evrazii: additivnye modeli v klimaticheskikh gradiyentakh (Tree biomass of two-needled pines in Eurasia: additive models in climatic gradients) // Sib. Lesn. Zurn. (Sib. J. For. Sci.). 2019b. N. 1. P. 44–56 (in Russian with English abstract)].

Четыркин Е. М. Статистические методы прогнозирования. М.: Статистика, 1977. 200 с. [Chetyrkin E. M. Statisticheskie metody prognozirovaniya (Statistical methods of forecasting). Moscow: Statistika, 1977. 200 p. (in Russian).

Alcamo J., Moreno J. M., Nováky B., Bindi M., Corobov R., Devoy R. J., Giannakopoulos C., Martin E., Olesen J. E., Shvidenko A. Z. Europe. Climate change 2007: impacts, adaptation and vulnerability // Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change / M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, C. E. Hanson (Eds.). Cambridge: Cambridge Univ. Press, 2007. P. 541–580.

Anderegg W. R., Anderegg L. D., Kerr K. L., Trugman A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms // Glob. Change Biol. 2019. V. 25. Iss. 11. P. 3793–3802.

Anderson-Teixeira K. J., Allen A. P., Gillooly J., Brown J. Temperature-dependence of biomass accumulation rates during secondary succession // Ecol. Lett. 2006. V. 9. Iss. 6. P. 673–682.

Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Can. J. For. Res. 1972. V. 2. Iss. 1. P. 49–53.

Behrensmeyer A. K. Atmosphere: Climate change and human evolution // Science. 2006. V. 311 (5760). P. 476–478.

Berdugo M., Delgado-Baquerizo M., Soliveres S., Hernández-Clemente R., Zhao Y., Gaitán J. J., Gross N., Saiz H., Maire V., Lehman A., Rillig M. C., Solé R. V., Maestre F. T. Global ecosystem thresholds driven by aridity // Science. 2020. V. 367 (6479). P. 787–790.

Berner L. T., Beck P. S., Bunn A. G., Goetz S. J. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia // Glob. Change Biol. 2013. V. 19. Iss. 11. P. 3449–3462.

Bhatti J. S., Apps M. J., Lal R. Anthropogenic changes and the global carbon cycle // Climate change and managed ecosystems. Chapter 4. Price Boca Raton: CRC Press, Taylor & Francis Group, 2006. P. 71–91.

Bijak S. Tree-ring chronology of silver fir and ist dependence on climate of the Kaszubskie Lakeland (Northern Poland) // Geochronometria. 2010. V. 35. P. 91–94.

Bouriaud O., Bréda N., Dupouey J.-L., Granier A. Is ring width a reliable proxy for stem-biomass increment? A case study in European beech // Can. J. For. Res. 2005. V. 35. Iss. 12. P. 2920–2933.

Carrer M., Urbinati C. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra // Ecology. 2004. V. 85. Iss. 3. P. 730–740.

DeLeo V. L., Menge D. N., Hanks E. M., Juenger T. E., Lasky J. R. Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana // Glob. Change Biol. 2020. V. 26. N. 2. P. 523–538.

Douglass A. E. Climatic cycles and trees-growth. A study of the annual rings of trees in relation to climate and solar activity. Washington: Publ. Carnegie Inst. Washington, 1919. Publ. N. 289. 127 p.

Eggers J., Lindner M., Zudin S., Zaehle S., Liski J. Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century // Glob. Change Biol. 2008. V. 14. Iss. 10. P. 2288–2303.

Emanuel W. R., Shugart H. H., Stevenson M. P. Climate change and the broad-scale distribution of terrestrial ecosystem complexes // Climate Change. 1985. V. 7. P. 29–43.

Fatemi F. R., Yanai R. D., Hamburg S. P., Vadeboncoeur M. A., Arthur M. A., Briggs R. D., Levine C. R. Allometric equations for young northern hardwoods: the importance of age-specific equations for estimating aboveground biomass // Can. J. For. Res. 2011. V. 41. N. 4. P. 881–891.

Felton A., Nilsson U., Sonesson J., Felton A. M., Roberge J.-M., Ranius T., Ahlström M., Bergh J., Björkman C., Boberg J., Drössler L., Fahlvik N., Gong P., Holmström E., Keskitalo E. C., Klapwijk M. J., Laudon H., Lundmark T., Niklasson M., Nordin A., Pettersson M., Stenlid J., Sténs A., Wallertz K. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden // Ambio. 2016. V. 45 (Suppl. 2). P. 124–139.

Folland C. K., Palmer T. N., Parker D. E. Climate change 2001: The scientific basis // Contribution of working group I to the third assessment report of the intergovernmental panel on climate change / J. T. Houghton et al. (Eds.). Cambridge, UK: Cambridge Univ. Press, 2001. 1032 p.

Forrester D. I., Tachauer I. H., Annighöefer P., Barbeito I. G., Pretzsch H., Ruiz-Peinado R., Stark H., Vacchiano G., Zlatanov T., Chakraborty T., Saha S., Sileshi G. W. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate // For. Ecol. Manag. 2017. V. 396. P. 160–175.

Fotheringham A. S., Brunsdon C., Charlton M. Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons Ltd. The Atrium, Southern Gate, Chichester, England, 2002. 269 p.

Fu L. Y., Zeng W. S., Tang S. Z., Sharma R. P., Li H. K. Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales – A case study for Masson pine in Southern China // J. For. Sci. 2012. V. 58. N. 3. P. 101–115.

Fu L., Sun W., Wang G. A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China // Trees. 2017. V. 31. P. 557–573.

Givnish T. J. Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox // Silva Fenn. 2002. V. 36. N. 3. P. 703–743.

Halofsky J. S., Conklin D. R., Donato D. C., Halofsky J. E., Kim J. B. Climate change, wildfire, and vegetation shifts in a high-inertia forest landscape: Western Washington, U.S.A // PLoS ONE. 2018. V. 13. N. 12. P. 1–23.

Hubau W., Lewis S. L., Phillips O. L., Affum-Baffoe K., Beeckman H,, Cuní-Sanchez A,, Daniels A. K., Ewango C. E., Fauset S., Mukinzi J. M., Sheil D., Sonké B., Sullivan M. J., Sunderland T. C., Taedoumg H., Thomas S. C., White L., Abernethy K. A., Adu-Bredu S., Amani C. A., Baker T. R., Banin L. F., Baya F., Begne S. K., Bennett A. C., Benedet F., Bitariho R., Bocko Y. E., Boeckx P., Boundja R., Brienen R. J., Brncic T. M., Chezeaux E., Chuyong G. B., Clark C. J., Collins M., Comiskey J., Coomes D., Dargie G., de Haulleville T., Kamdem M. N., Doucet J. L., Esquivel-Muelbert A., Feldpausch T. R., Fofanah A., Foli E. G., Gilpin M., Gloor M., Gonmadje C. F., Gourlet-Fleury S., Hall J. S., Hamilton A. C., Harris D. J., Hart T. B., Hockemba M. B., Hladik A., Suspense I. A., Jeffery K. J., Jucker T., Yakusu E. K., Kearsley E., Kenfack D., Koch A., Leal M. E., Levesley A., Lindsell J. A., Lisingo J., Lopez-Gonzalez G., Lovett J. C., Makana J. R., Malhi Y., Marshall A. R., Sullivan M. J., Martin E. H., Mbayu F., Medjibe V. P., Mihindou V., Mitchard E. T., Moore S., Munishi P. K., Bengone N. N., Ojo L., Ondo F. E., Peh K. S., Pickavance G. C., Poulsen A. D., Poulsen J. R., Qie L., Reitsma J. M., Rovero F., Swaine M. D., Talbot J., Taplin J., Taylor D., Thomas D. W., Toirambe B., Mukendi J. T., Tuagben D., Umunay P., van der Heijden G. M., Verbeeck H., Vleminckx J., Willcock S., Wöll H., Woods J. T., Zemagho L. Asynchronous carbon sink saturation in African and Amazonian tropical forests // Nature. 2020. V. 579. P. 1–27.

Huston M. A., Wolverton S. The global distribution of net primary production: Resolving the paradox // Ecol. Monogr. 2009. V. 79. N. 3. P. 343–377.

Jacobs M. W., Cunia T. Use of dummy variables to harmonize tree biomass tables // Can. J. For. Res. 1980. V. 10. Iss. 4. P. 483–490.

Keith H., Mackey B. G., Lindenmayer D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests // PNAS USA. 2009. V. 106. Iss. 28. P. 11635–11640.

Khan D., Muneer M. A., Nisa Z.-U., Shah S., Amir M., Saeed S., Uddin S., Munir M. Z., Lushuang G., Huang H. Effect of climatic factors on stem biomass and carbon stock of Larix gmelinii and Betula platyphylla in Daxing’anling Mountain of Inner Mongolia, China // Adv. Meteorol. 2019. Article ID 5692574. P. 1–10.

Kosanic A., Anderson K., Harrison S., Turkington T., Bennie J. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK) // PLoS ONE. 2018. V. 13. N. 2. P. 1–18.

Laing J., Binyamin J. Climate change effect on winter temperature and precipitation of Yellowknife, Northwest Territories, Canada from 1943 to 2011 // AJCC. 2013. V. 2. N. 4. P. 275–283.

Lapenis A., Shvidenko A., Shepaschenko D., Nilsson S., Aiyyer A. Acclimation of Russian forests to recent changes in climate // Glob. Change Biol. 2005. V. 11. P. 2090–2102.

Liang J., Crowther T. W., Picard N., Wiser S., Zhou M., Alberti G., Schulze E.-D., McGuire A. D., Bozzato F., Pretzsch H., de-Miguel S., Paquette A., Hérault B., Scherer-Lorenzen M., Barrett C. B., Glick H. B., Hengeveld G. M., Nabuurs Gert-Jan, Pfautsch S., Viana H., Vibrans A. C., Ammer C., Schall P., Verbyla D., Tchebakova N., Fischer M., Watson J. V., Chen Han Y. H., Lei X., Schelhaas M.-J., Lu Huicui, Gianelle D., Parfenova E. I., Salas C., Lee E., Lee B., Kim H. S., Bruelheide H., Coomes D. A., Piotto D., Sunderland T., Schmid B., Gourlet-Fleury S., Sonké B., Tavani R., Zhu J., Brandl S., Vayreda J., Kitahara F., Searle E. B., Neldner V. J., Ngugi M. R., Baraloto C., Frizzera L., Ba Azy R., Oleksyn J., Zawiła-Niedźwiecki T., Bouriaud O., Bussotti F., Finér L., Jaroszewicz B., Jucker T., Valladares F., Jagodzinski A. M., Peri P. L., Gonmadje C., Marthy W., Obrien T., Martin E. H., Marshall A. R., Rovero F., Bitariho R., Niklaus P. A., Alvarez-Loayza P., Chamuya N., Valencia R., Mortier F., Wortel V., Engone-Obiang N. L., Ferreira L. V., Odeke D. E., Vasquez R. M., Lewis S. L., Reich P. B. Positive biodiversity-productivity relationship predominant in global forests // Science. 2016. V. 354. P. 196–208.

Lomolino M. V., Riddle B. R., Brown J. H. Biogeography. 3rd ed. Sunderland, Massachusetts: Sinauer Ass. Inc., 2006. 846 p.

Marcolla B., Migliavacca M., Rödenbeck C., Cescatti A. Patterns and trends of the dominant environmental controls of net biome productivity // Biogeosciences. 2020. V. 17. P. 2365–2379.

Morley J. W., Batt R. D., Pinsky M. L. Marine assemblages respond rapidly to winter climate variability // Glob. Change Biol. 2017. V. 23. Iss. 7. P. 2590–2601.

Ni J., Zhang X.-S., Scurlock J. M. O. Synthesis and analysis of biomass and net primary productivity in Chinese forests // Ann. For. Sci. 2001. V. 58. N. 4. P. 351–384.

Ochał W., Wertz B., Socha J. Evaluation of aboveground biomass of black alder // Forest Biomass Conference 2013, 7–9 Oct., 2013, Mierzęcin, Poland. Book Abstr. / A. M. Jagodziński and A. Węgiel (Eds.). Poznań, 2013. 40 p.

Preese F. Linear regression methods for forest research. USDA For. Serv. Res. Paper. FPL 17. Madison, 1964. 136 p.

Qiu Q., Yun Q., Zuo Sh., Yan J. P., Hua L., Ren Y., Tang J., Li Y., Chen Q. Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China // J. For. Res. 2018. V. 29. N. 5. P. 1263–1276.

Santini M., Collalti A., Valentini R. Climate change impacts on vegetation and water cycle in the Euro-Mediterranean region, studied by a likelihood approach // Reg. Environ. Change. 2014. V. 14. N. 4. P. 1405–1418.

Schaphoff S., Reyer C. P., Schepaschenko D., Gerten D., Shvidenko A. Tamm Review: Observed and projected climate change impacts on Russia’s forests and its carbon balance // For. Ecol. Manag. 2016. V. 361. P. 432–444.

Schulze E.-D. The carbon and nitrogen cycle of forest ecosystems // Carbon and nutrient cycling in European forest ecosystems. Berlin, Heidelberg, New York: Springer-Verlag, 2000. V. 142. P. 3–13.

Shuman J. K., Shugart H. H. Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model // Environ. Res. Lett. 2009. V. 4. N. 4. P. 1–7.

Spathelf P., Stanturf J., Kleine M., Jandl R., Chiatante D., Bolte A. Adaptive measures: integrating adaptive forest management and forest landscape restoration // Ann. For. Sci., Springer Verlag EDP Sci. 2018. V. 75 (2). P. 55.

Sperry J. S., Venturas M. D., Todd H. N., Trugman A. T., Anderegg W. R. L., Wang Y., Tai X. The impact of rising CO2 and acclimation on the response of US forests to global warming // PNAS USA. 2019. V. 116. N. 51. P. 25734–25744.

Stegen J. C., Swenson N. G., Enquist B. J., White E. P., Phillips O. L., Jorgensen P. M., Weiser M. D., Mendoza A. M., Vargas P. N. Variation in above-ground forest biomass across broad climatic gradients // Glob. Ecol. Biogeogr. 2011. V. 20. N. 5. P. 744–754.

Toromani E., Bojaxhi F. Growth response of silver fir and Bosnian pine from Kosovo // South-East Europ. For. 2010. V. 1. N. 1. P. 20–27.

Usoltsev V. A. Forest biomass and primary production database for Eurasia. CD-version. 3rd ed., enlarged. Yekaterinburg: Ural St. For. Engineer. Univ., 2020.

Vasseur F., Exposito-Alonso M., Ayala-Garay O. J., Wang G., Enquist B. J., Vile D., Violle C., Weigel D. Adaptive diversification of growth allometry in the plant Arabidopsis thaliana // PNAS USA. 2018. V. 115. N. 13. P. 3416–3421.

Wilmking M., Juday G. P., Barber V. A., Zald H. S. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds // Glob. Change Biol. 2004. V. 10. P. 1724–1736.

World Weather Maps, 2007. https://www.mapsofworld.com/referrals/weather

Xu C., Kohler T. A., Lenton T. M., Svenning J.-C., Scheffer M. Future of the human climate niche // PNAS USA. 2020. V. 117. N. 21. P. 11350–11355.

Yu G., Liu Y., Wang X., Ma K. Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.) // Trees. 2008. V. 22. P. 197–204.

Zeng W. S. Developing tree biomass models for eight major tree species in China // Biomass volume estimation and valorization for energy. Chapter 1. Intech Publ., 2017. P. 3–21.

Zeng W. S., Duo H. R., Lei X. D., Chen X. Y., Wang X. J., Pu Y., Zou W. T. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China // Europ. J. For. Res. 2017. V. 136. Iss. 2. P. 233–249.

Zheng D., Zeng W. Using dummy variable approach to construct segmented aboveground biomass models for larch and oak in northeastern China // J. Beijing For. Univ. 2013. V. 35. N. 6. P. 34–36 (in Chinese with English abstract).

Zubairov B., Heußner K.-U., Schröder H. Searching for the best correlation between climate and tree rings in the Trans-Ili Alatau, Kazakhstan // Dendrobiology. 2018. V. 79. P. 119–130.


Вернуться к списку статей